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Abstract. Regularization is used in deformable image registration to
encourage plausible displacement fields, and significantly impacts the
derived correspondences. Sliding motion, such as that between the lungs
and chest wall and between the abdominal organs, complicates regis-
tration because many regularizations are global smoothness constraints
that produce errors at object boundaries. We present locally adaptive
regularizations that handle sliding objects with locally planar and tubu-
lar geometries. These regularizations allow discontinuities to develop in
the displacement field at sliding interfaces and increase the independence
with which regions surrounding distinct geometric structures can behave.
Validation is performed by registering inhale and exhale abdominal com-
puted tomography (CT) images and artificial images of a sliding tube.
The sliding registration methods produce more realistic correspondences
that may better reflect the underlying physical motion, while performing
as well as the diffusive regularization with respect to image match.

1 Introduction

Within many clinical workflows, the goal of deformable image registration is
to (1) quantify treatment effectiveness by measuring change within longitudinal
datasets or across subjects, (2) map surgical plans from preoperative images
onto intraoperative images for guidance, or (3) align atlases with patient images
to map auxilliary information from the atlas, such as expected functional site
localizations, into the patient. To successfully accomplish thse tasks, it is critical
to establish accurate correspondence between the images. However, establishing
correspondence using a deformable image registration method that optimizes
image match alone is ill-posed, i.e. there exist many displacement fields that
produce the same transformed moving image [5].

To obtain sensible correspondences using deformable image registration, a
regularization term is typically introduced to encourage a smooth displacement
field. The registration result is therefore a compromise between image similarity
and spatial regularity, and the regularization forms a strong prior on the final
transformation. This is true for any non-corner or point structure due to spatial
ambiguity (the so-called aperture effect). Registration results are dependent on



relatively sparse features and regularization drives the estimation of otherwise
unobservable deformations within homogeneous regions.

The focus of this paper is on accurately registering images that depict sliding
motion between multiple structures. This includes the sliding of the abdominal
organs and lungs due to respiration. Here, the assumption of a globally smooth
displacement field is inappropriate, as globally smoothing regularizations, such as
the diffusive regularization, cannot recover the motion discontinuities that arise
at the interfaces between sliding structures. Locally adaptive regularizations [2,
9] vary spatially and can more accurately capture complex deformations.

Several regularizations aiming to handle sliding motion have been presented,
but have typically been applied to the alignment of lung images. These include
investigations of non-quadratic regularizers [4], a volume-preserving regulariza-
tion that allows shear discontinuities at sliding interfaces [7], and regularizations
based on anisotropic diffusion that use supplied organ segmentations [6, 8, 10].
We take this last approach here. Yin et al. [10] tailor their regularization towards
the biomechanics of lung lobar fissures using spatially-varying isotropic smooth-
ing. Schmidt et al. [8] implement sliding motion by smoothing the displacement
components tangential to the sliding interface separately for a sliding object
and within its background, using Neumann boundary conditions. We present a
regularization that instead applies separate diffusion tensors to the normal and
tangential displacements of the entire displacement field. This regularization na-
tively handles multiple sliding organs and has been evaluated preliminarily using
synthetic and phantom lung images [6].

The sliding regularizations based on anisotropic diffusion described above,
including our own work [6], solely handle displacement field discontinuities at
roughly planar interfaces between two sliding organs. By also adding notions of
tubular and point-like structures, we present a regularization that handles sliding
motion of planes and tubes and that smooths displacement fields according to
local structure classifications. We refer to registration methods including this
regularization as “geometry conditional registration methods”.

We begin by outlining our sliding organ formulation, followed by a descrip-
tion of its extension to a geometry conditional deformable registration method
that also considers tubular and point-like structures. Validation is conducted
by performing intra-subject registrations between inhale and exhale computed
tomography (CT) images and between artificial images depicting a sliding tube.
These assessments demonstrate the increased plausibility of the resulting dis-
placement field, which encapsulates the correspondence necessary to use regis-
tration in clinical tasks. Additionally, these results demonstrate the advantages
of considering sliding motion throughout the abdomen.

2 Methods

2.1 Deformable non-parametric image registration

Given a target image T and a moving image M on the domain Ω, deformable
non-parametric image registration aims to find a displacement field u that maps



the moving image onto the target such that T (x) ≈M(x−u(x)) [5]. This is often
performed by minimizing a cost function of the form C(u) = D[T,M ;u]+αS(u).
D[T,M ;u] is an image match distance measure between T and M under the
current estimate of the displacement field u, and S(u) is the regularization that
penalizes unrealistic displacement fields.

2.2 Principles of sliding motion

Writing a regularization for use in registering images depicting sliding organs
can be guided by decomposing the displacement field u into normal (u⊥) and
tangential (u‖) displacements with respect to the organ boundary along which
sliding is expected to occur. One can then consider the following principles [6,
8] close to sliding organ boundaries:

1. Sliding motion: Sliding causes the tangential displacements to be discon-
tinuous along the normal direction(s).

2. Intra-organ smoothness: The displacements must be smooth along the
tangential direction(s) to encourage smooth movement within individual
structures.

3. Inter-organ coupling: Discontinuities in the normal displacements in the
surface normal direction(s) are penalized to ensure organs do not pull apart
(a valid assumption for many medical images).

2.3 Sliding organ registration

For sliding organ registration, we encapsulate these rules in a regularizer based
on anisotropic diffusion [6]. Here, diffusion tensors specify the direction and
strength of the intra-organ smoothness (IOS) and inter-organ coupling (IOC)
constraints:

Ssliding(u) =
1

2

∑
l=x,y,z

∑
x∈Ω
‖DIOS(x)Oul(x) +DIOC(x)Ou⊥l (x)‖2 (1)

where O is the gradient operator, ul(x) is the lth scalar component of the dis-
placement field, and u⊥l (x) is the lth scalar component of the normal component
of the displacement field. If n(x) is the normal to the organ boundary derived
from a surface model of the organ and nl(x) is its lth scalar component, then
u⊥l (x) =

(
u(x)Tn(x)

)
nl(x).

The diffusion tensor
P (x) = n(x)n(x)T (2)

smooths in the normal direction alone, while the diffusion tensor I − P (x)
smooths in the tangential plane. We therefore define the intra-organ smooth-
ness and inter-organ coupling diffusion tensors as:

DIOS(x) = I − w(x)P (x)

DIOC(x) = w(x)P (x)
(3)



The weighting term w(x) equals one at organ borders and decreases as a func-
tion of the distance d(x) to the organ boundary. w(x) can be formulated as
w(x) = e−λd(x) (exponential decay) or w(x) = 1

1+λγe−λd(x)2
(Dirac function

[8, 10]). Within organ interiors, w(x) ≈ 0 and the sliding organ regularization
tends to the diffusive regularization Sdiffusive(u) = 1

2

∑
l=x,y,z

∑
x∈Ω ‖Oul(x)‖2,

which enforces smooth motion in all directions and serves as a point of compar-
ison in this study.

2.4 Geometry conditional deformable image registration

Regions within medical images can be classified into four types: homogeneous
regions, and those representing planes, tubes, and small point-like (spherical)
structures. We would like to recover sliding motion for both planar and tubular
structures. Examples of registrations involving the later include registration of
images showing contrast agent flowing through vessels or needles moving through
tissue.

In the geometry conditional regularization, we include explicit planar, tubular
and point-like structure classifications and aim to recover large and discontinuous
deformations. The intra-organ smoothness constraint ensures displacement field
smoothness within individual structures and the inter-organ coupling constraint
propagates locally detectable displacements to their neighborhood. Discontinu-
ities are allowed to develop where there is tangential movement of planes or
tubes. Tube segmentations are stored as centerline+radius+normals measure-
ments and can be extracted using methods such as that described in [1]. Since
correspondence for a point-like structure is unambiguous, its displacement vec-
tors should be propagated to its surroundings and the diffusive regularization is
appropriate. Forsberg et al. [3] also integrate concepts of local structure but do
not model sliding motion.

The sliding geometries regularizer is formed by substituting new definitions
for u⊥l (x) and P (x) used in equations (1) and (3). Note that planar, tubular and
point-like structures have one, two and three normals, respectively. Based on the
local geometry, we include up to three normals at each coordinate, n0(x), n1(x),
n2(x), and we add the structure-dependent variables a1(x) and a2(x) (planes:
a1 = a2 = 0; tubes a1 = 1, a2 = 0; points a1 = a2 = 1). Define N(x) as the 3×3
matrix [n0(x), n1(x), n2(x)],A as a 3×3 diagonal matrix whose diagonal elements
are (1, a1(x), a2(x)), and Nl(x) as the column vector of the lth components of
the (up to) three normals. The scalar components of the normal displacements
u⊥(x) can now be written as:

u⊥l (x) = (N(x)A(x)Nl(x))
T
u(x) (4)

Similarly, equation (2) is extended to write the diffusion tensor P (x) that smooths
in the normal direction alone as:

P (x) = N(x)A(x)N(x)T

= n0(x)n0(x)T + a1(x)n1(x)n1(x)T + a2(x)n2(x)n2(x)T
(5)



This formulation approximates the diffusive regularization at point-like struc-
tures, where a1(x) = a2(x) = 1, and within organ interiors, where w(x) ap-
proximates zero. Near planar objects, the regularization equals the sliding organ
regularization presented earlier.

2.5 Optimization

We use a gradient descent scheme to minimize the cost function C(u) using the
regularization defined in equation (1). Without loss of generality, and since we
focus on monomodal registration of CT images, we use the sum of squared dif-
ferences image similarity metric for D[T,M ;u]. On each registration iteration,
the sliding geometries regularization induces an update to the displacement field
equal to −OuS(u)4t at each coordinate x, where OuS(u) is the gradient of equa-
tion (1) with respect to a small perturbation and 4t is the time step. Dropping
the (x) notation,

OuS(u) = −
∑

l=x,y,z

div((I − wP )T ((I − wP )Oul + wPOu⊥l ))el

+ div(wPT ((I − wP )Oul + wPOu⊥l ))NANl

(6)

where el is the lth canonical unit vector (ex. ex = [1, 0, 0]T ). At convergence, this
gradient must be balanced with the gradient from the image similarity measure.

3 Validation

3.1 Inhale/exhale abdominal CT registration

Respiration induces significant and complex deformations to the abdominal or-
gans, including sliding motions between several semi-independent organs. An
arterial abdominal CT image acquired at inhale (target) was registered with a
hepatic-venous abdominal CT image (moving) from the same patient acquired
at exhale (size 240×170 × 150; spatial resolution 1.5mm3). Segmentations of the
liver, left and right kidneys, and bones were created semi-automatically in the
target image and used to generate surface models defining organ boundaries and
normals. Following initial rigid alignment between the two images, the sliding
organ deformable registration algorithm described in Section 2.3 was applied in
a multi-resolution framework using two resolution levels, the first downsampling
by a factor of two and the second operating at native resolution. The regis-
trations took 1000 and 3000 iterations, respectively, with time step 0.046875
s, empirically-determined parameters λ = 0.2 (for exponential decay) and α =
24/8, and were repeated using the diffusive regularization for comparison.

Figure 1 shows the alignment between the target and deformed moving im-
ages following sliding organ registration. The alignment was validated quantita-
tively by segmenting the liver, kidneys and bones in the moving image, warping
the resulting label map by the registration displacement field, and calculating



Fig. 1: Top: Coronal slice through the (left) moving, (center) target, and (right)
transformed moving abdominal CT images using the sliding organ registration.
Bottom: Coronal slice through the displacement fields from the (left) sliding
organ and (center) diffusive registrations, with overlaid anatomical outlines for
context, plus (right) the difference vector magnitudes between the displacement
fields from the two registrations (best viewed in colour online).

the Dice coefficients between them and segmentations within the target image
(Table 1). The results show good overlap between anatomical structures follow-
ing image registration using the sliding regularization and comparable accuracy
to the diffusive regularization.

The improvements of the sliding organ registration lie in the derived corre-
spondences. Figure 1 shows representative coronal slices through the displace-
ment fields from registration with the sliding organ and diffusive regularizations,
and the magnitudes of their voxel-wise difference vectors. Unlike the diffusive
regularization, the sliding organ regularization preserves the independent and
sliding motion of the liver and kidneys. The difference vector magnitude image
shows that allowing sliding motion at organ borders causes significant differ-

Table 1: Dice coefficient for organ mask overlap between target images and de-
formed moving images of registered abdominal images, after registration using
the sliding organ and diffusive regularizations.

Organ Sliding Diffusive

Liver 0.946 0.945
Right Kidney 0.877 0.870
Left Kidney 0.888 0.896

Bones 0.826 0.840



Fig. 2: Top: (left) Volume rendering of the sliding tube within the target image,
plus slices along the tube’s long axis for the (center) target and (right) moving
images. Bottom: Representative long-axis and cross-sectional slices through the
displacement magnitudes resulting from registration with the (left) geometry-
conditional and (right) diffusive regularizations (best viewed in colour online).

ences in the motion interpolated deep within organs, leading to greatly altered
detected correspondences of up to 7mm.

3.2 Artificial images of a sliding tube

We used the geometry conditional deformable registration algorithm described in
Section 2.4 to register artificial images of a tube sliding along its long axis (size
80×80×80; spatial resolution 1mm3) (Figure 2). Registration was performed
using a single resolution level, and compared to the results from the diffusive
regularization (8000 and 190000 iterations required to recover the 4mm motion
at the tube’s edge, respectively, with time step 0.125, λ=0.25, γ=1000, α=1).

As shown in Figure 2, registration with the geometry conditional regulariza-
tion nicely recovers and constrains the longitudinal motion within the tube. The
background material correctly moves with the tube at its two ends, preventing
folding, while motion is not interpolated to the stationary background elsewhere.
In contrast, registration with the diffusive regularization incorrectly blends the
tube’s motion within the entire background.

4 Conclusions

In this paper, we have presented sliding organ and geometry conditional reg-
ularizations for deformable image registration, to align image pairs exhibiting



large and complex deformations with a focus on handling sliding motion. By
taking advantage of local structure information modeled as surfaces and tubular
structures, these registration techniques increase the plausibility of the result-
ing displacement fields while maintaining registration accuracy as measured by
image match. In the domain of abdominal imaging, such improved correspon-
dence detection has implications for more accurate image-guided interventions,
longitudinal and intersubject analysis, and application of atlas information to
individuals. Future work includes additional quantitative validation of corre-
spondence accuracy, application of the geometry conditional regularization to
clinical images, and investigations into alternatives to requiring a detailed prior
segmentation.

The registration software is available at http://public.kitware.com/Wiki/
TubeTK. This work was sponsored in part by: (1) NIH/NCI 1R01CA138419-01;
(2) NIH/NIBIB 2U54EB005149-06; (3) NIH/NCI 1R41CA153488-01; (4) NSF
EECS-0925875; (5) NIH/NIMH 1R01MH091645-01A1; (6) NIH/NIBIB
5P41EB002025-27; (7) NIH/NCI 1R41CA153488-01.
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