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Abstract
Character-based embedding models provide robustness for han-
dling misspellings and typos in natural language. In this pa-
per, we explore convolutional neural network based embedding
models for handling out-of-vocabulary words in a meal descrip-
tion food ranking task. We demonstrate that character-based
models combined with a standard word-based model improves
the top-5 recall of USDA database food items from 26.3% to
30.3% on a test set of all USDA foods with typos simulated
in 10% of the data. We also propose a new reranking strat-
egy for predicting the top USDA food matches given a meal
description, which significantly outperforms our prior method
of n-best decoding with a finite state transducer, improving the
top-5 recall on the all USDA foods task from 20.7% to 63.8%.
Index Terms: Convolutional Neural Networks, Crowdsourc-
ing, Character-based embeddings, Levenshtein Edit Distance

1. Introduction
The motivation for our work in the nutrition domain stems from
the rising obesity rate in the United States. Adult obesity in-
creased from 13% to 32% between the 1960s and 2004 [1], and
today more than one-third of American adults (i.e., 78.6 mil-
lion) are obese [2], leading to an estimated medical cost of $147
billion in 2008 [3]. Although food journaling is a useful tool for
weight loss, existing diet tracking applications such as MyFit-
nessPal [4] are too time-consuming for many users, requiring
manually entering each eaten food by hand and selecting the
correct item from a long list of entries in the nutrient database.

Our goal is to provide a simpler diet tracking option for
obesity patients by applying speech and language understand-
ing technology to automatically detect food entities and find
the corresponding nutrition facts in a database. In our prior
work [5], we explored a convolutional neural network (CNN)
for directly mapping between users’ meal descriptions and the
corresponding food database matches. We showed that this
method outperformed our previous approach of first tagging
foods and properties with a conditional random field (CRF),
followed by food-property association, and subsequently using
heuristics to map foods to the nutrient database [6, 7].

In this work, we address the problem of what happens when
a user misspells a food or brand in their meal description, or
when there is a new food that the system has not seen before in
the training data. To handle these cases, we develop a character-
based CNN that learns embeddings for each character in a to-
ken, rather than only at the word level. Thus, with a char-
acter model, out-of-vocabulary (OOV) words are represented
as character sequences and can be used to predict matching
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foods with similar characters, while the previous word-based
approach would not be able to handle such OOV words.

2. Related Work
Many researchers in the natural language processing com-
munity are currently exploring convolutional neural networks
(CNNs) for processing text. In question answering, recent
work has shown improvements using deep CNN models for
text classification [8, 9, 10], following the success of deep
CNNs for computer vision. In other work, parallel CNNs
predict the similarity of two input sentences by computing a
word similarity matrix between the two sentences as input to a
CNN [11, 12, 13]. Attention-based CNNs were also proposed
for sentence matching [14] and machine comprehension [15].

Much work has also been done with character-based
models. Character-based long short-term memory networks
(LSTMs) have been used in neural machine translation for han-
dling OOV words [16], and Google used sub-word units (called
“wordpieces”), that performed better than character-based or
word-based models for translation [17]. Character-based and
word-based embeddings have been combined into joint embed-
dings for state-of-the-art part-of-speech tagging, which requires
syntactic information [18]. Most similar to our approach, Kim
et al. learned character-based word embeddings using a CNN
followed by a highway network [19]; however, while their task
is language modeling, to which they apply a recurrent neural
network, ours is binary classification of meal descriptions and
USDA food items, to which we apply a CNN. Other related
work explored deep character-based CNNs for large-scale text
classification [20].

3. Models
In this section, we discuss the model we employed for mapping
meal descriptions to USDA food items. There are two steps
required to select the top-5 USDA food database matches for
a given meal description: 1) train a neural network model that
learns vector representations for USDA food items through a
binary verification task (i.e., whether or not a USDA item is
mentioned in a meal description), and 2) rank all the possible
USDA hits to determine the top-5 matches. We then discuss
our character-based models for handling typos.

The training condition (binary verification) differs from the
test condition (ranking) because our data does not have informa-
tion about which meal tokens map to which USDA foods (i.e.,
food segments are not labeled), so the model must learn this
relation automatically through binary verification. We experi-
mented with directly predicting the matching USDA foods for a
given meal using a softmax output, but this resulted in much
lower performance (3.6% top-5 recall on sandwiches, versus
76.5% with the ranking scheme we will describe later).



3.1. Convolutional Neural Network

As shown in Figure 1, our new model is composed of a shared
64-dimension embedding layer, followed by one convolution
layer above the embedded meal description and max-pooling
over the embedded USDA input (rather than one CNN for the
meal and another for the USDA food item). The text is tok-
enized using spaCy (https://spacy.io). The meal CNN computes
a 1D convolution of 64 filters spanning a window of three tokens
with a rectified linear unit (ReLU) activation. During training,
both the USDA input’s max-pooling and the CNN’s convolution
over the meal description are followed by dropout [21] of prob-
ability 0.11 and batch normalization [22] to maintain a mean
near zero and a standard deviation close to one. A dot prod-
uct is performed between the max-pooled 64-dimension USDA
vector and each 64-dimension CNN output of the meal descrip-
tion. Mean-pooling across these dot products yields a single
scalar value, followed by a sigmoid layer for final prediction.2

This design is motivated by our goal to compare the similarity
of specific words in a meal description to each USDA food.

Figure 1: Architecture of our CNN model for predicting whether
a USDA food entry is mentioned in a meal description.

To prepare the data for training, we padded each text input
to 100 tokens3 and limited the vocabulary to the most frequent
3,000 words, setting the rest to UNK. We trained the model to
predict each (USDA food, meal) input pair as a match or not
(1 or 0) with a threshold of 0.5 on the output. The model was
optimized with Adam [23] on binary cross-entropy loss, norm
clipping at 0.1, a learning rate of 0.001, early stopping after the
loss stops decreasing for the second time on the validation data
(i.e., 20% of the data), and mini-batches of 16 samples. We
removed all capitalization and commas from the USDA foods.

3.2. Ranking USDA Foods

While the CNN model learns to predict whether or not a USDA
food is mentioned in a meal, it does not directly retrieve the
matching USDA foods from a meal. To make predictions at
test time, we rank all the USDA food database entries, and we
return the top-5 to the user. The most intuitive approach is to
rank all USDA foods simply based on the posterior probability
output by the model, but this does not accomplish our goal of
providing the top-5 alternatives for each matching food in the

1Performance was better with 0.1 dropout than 0.2 dropout or with-
out any dropout.

2The inverse (mean-pooling before dot product) hurt performance.
3We selected 100 as an upper bound since the longest meal descrip-

tion in the data contained 93 words.

meal, since the match is based on similarity with the entire meal
description and does not allow us to distinguish which USDA
hits match which eaten foods.4

Thus, we first perform semantic tagging on the tokens in
the meal description with a pre-trained CNN tagger [24], which
labels tokens as Begin-Food, Inside-Food, Quantity, and Other.
Then, we feed the meal description into the pre-trained embed-
ding layer in the model described in Section 3.1 to generate vec-
tors for each token. Finally, we average the vectors for tokens
in each tagged food segment (i.e., consecutive tokens labeled
Begin-Food and Inside-Food), and compute the dot products
between these food segments and each previously computed
and stored USDA food vector.5 The dot products are used to
rank the USDA foods in two steps: a fast-pass ranking followed
by fine-grained re-ranking that weights important words more
heavily. For example, simple ranking would yield generic milk
as the top hit for 2% milk, whereas re-ranking focuses on the
property 2% and correctly identifies 2% milk as the top match.

• ranking: initial ranking of USDA foods using dot prod-
ucts between USDA vectors and food segment vectors.

• re-ranking: fine-grained word-by-word similarity rank-
ing of the top-30 hits with a weighted distance D.

D =
∑
i

αi max
j

(wi · wj) +
1

N

∑
j

βj max
i

(wi · wj) (1)

where N refers to the length of the tagged food segment. The
left-hand term finds the most similar meal description token wj

to each USDA token wi, weighted by the probability αi that
token was used to describe the USDA food item in the training
data. In the same way, the right-hand term finds the most sim-
ilar USDA token wi to each meal token wj , weighted by the
probability βj that token wj was used to describe that USDA
food item in the training data (see an example in Fig. 2).6

Figure 2: A reranking example for the food “chili” and match-
ing USDA item “chili with beans canned.” There is only one β0
term in the right-hand summation of equation 1, since there is
only a single token “chili” from the meal description.

3.3. Character-based Models

The aim of this work is to handle out-of-vocabulary (OOV)
words, which the current word-based CNN models are unable
to. For example, if the user misspells “cheerios” as “cherios,”
ideally the system would be able to correctly interpret this un-
known word as the cereal “cheerios.” To do this, we apply a
character-based CNN model that learns word embeddings based
on a convolution over characters, rather than mapping every un-
known word to UNK, which often yields incorrect results.

4The mean average precision is also lower (e.g., 12.7 on breakfast
data versus 31.8 with the ranking method we will describe next).

5Our approach with CNN-learned embeddings significantly outper-
forms re-ranking with skipgram embeddings [25]. For comparison, on
breakfast descriptions, our model achieves 64.8% top-5 recall, whereas
re-ranking with skipgrams only yields 3.0% top-5 recall.

6Although the sum appears biased toward longer USDA foods, the
right-hand term is over each token in the food segment, which is fixed,
and the left-hand term is normalized by the α weights. Dividing D by
the number of tokens in the USDA food item hurt performance (39.8%
recall on breakfast data versus 64.8% with the best model).



3.3.1. Levenshtein Edit Distance

As a baseline, we implemented the Levenshtein edit dis-
tance [26] for determining the distance between two sequences
of characters. The minimum distance is computed through the
following recurrence relation, where each term corresponds to
deletion, insertion, and substitution of a character, respectively:

d[i, j] = min (d[i− 1, j] + 1, d[i, j − 1] + 1, d[i− 1, j − 1] + c)
(2)

where cost c is 0 if the two characters are equal and 1 if not.
During the ranking step, if an OOV word is encountered, Leven-
shtein edit distance is used to determine which USDA foods are
most similar to the tagged food segment containing the OOV.

3.3.2. Character-based Embeddings

The second method we explored for handling OOV words is a
character-based CNN (charCNN) that processes each character
in a token in order to generate a word embedding. As shown in
Figure 3, each token is padded to 24 characters and fed through
the shared network, which consists of a 15-dimension embed-
ding layer over each character, followed by a convolution of 64
filters over windows of three characters with hyperbolic tangent
activation,7 max-pooling to reduce the 24 embeddings to a sin-
gle embedding, and finally a highway network on top [27] to
allow information flow along highways connecting layers.8

Figure 3: Architecture of the character-based CNN model.

Since the character-based models predict USDA matches
primarily based on similar character sequences, rather than se-
mantic similarity (e.g., “cheerios” would have a high similarity
to “cheese”), we modified the USDA food database names dur-
ing the ranking step for the DTW and charCNN models. Specif-
ically, we shortened the USDA food names to more concise de-
scriptions that only included those tokens that had an α weight
above a threshold of 0.25. Thus, the new USDA names only in-
cluded tokens that were used most often in the training data to
describe those USDA foods, which are more likely to match the
characters of that food in a user’s meal description. For exam-
ple, the USDA food “Cereals ready-to-eat, GENERAL MILLS,
CHEERIOS” would become simply “cheerios,” which exactly
matches the characters in the user-described food “cheerios.”

4. Experiments
To train and evaluate our models, we divided the data we col-
lected on Amazon Mechanical Turk (AMT) into 80% training

7We also tried rectified linear unit, but this did not perform as well.
8Without the highway layer, the performance is not as good.

and 20% testing sets. For each positive USDA hit, we ran-
domly selected a negative sample from the USDA items that
were not mentioned in the meal. Every model we trained, ex-
cept the charCNN, used additional training examples of meal
descriptions without punctuation. Since the ranking method at
test time matches USDA hits to individual food segments, we
also added training examples containing only the tokens in the
meal description that were aligned with the USDA food, as pre-
dicted by a Markov model (see our prior work [5] for details).
For example, in addition to training on the full meal “I had a
bowl of chili and an apple,” the models were also trained on
the aligned segments “chili” and “apple.” With the augmented
data, the performance is slightly higher, so we used alignments
for all models except the charCNN. Unless we explicitly men-
tion using the character-based models, we show results for the
word-based CNN in all experiments.

We tested the models on both a binary verification task (i.e.,
how well the model predicts whether a meal matches a USDA
food item) as well as ranking (i.e. how highly the model ranks
the correct USDA matches for a given meal). The binary ver-
ification results are reported as accuracy, while for ranking we
report top-5 recall and mean average precision (MAP) scores.

4.1. Data

As described in our prior work [5], we asked workers on AMT
to generate meal descriptions that matched a selected subset of
USDA items, which enabled us to build models that directly
map from meal descriptions to USDA foods. To generate in-
tuitive meal description tasks, we partitioned the over 5k foods
in the USDA database into specific meals such as breakfast and
dinner. We showed Turkers images of the foods to encourage
more natural food descriptions. We also selected a set of 101
food items that we are using for a pilot user study. In total,
the combined all-food category contains 31,712 meal descrip-
tions spanning 5,124 USDA food items. In addition, we are
currently collecting meal descriptions for a larger University of
Minnesota Nutrition Coordination Center (NCC) Food and Nu-
trient Database [28] with over 18k foods.

4.2. Model Comparison

First, we show in Table 1 that the new CNN architecture with
ranking outperforms the baseline CNN architecture [5] on the
101 foods case study. The only differences between the new
model and the baseline are that the baseline feeds both the
USDA and meal description inputs into a CNN (rather than only
max-pooling the USDA input), the embeddings are dimension
50 instead of 64, the USDA input is limited to 20 tokens instead
of 100, and a finite-state transducer (FST) is used instead of
the ranking algorithm by automatically predicting which three
USDA foods are aligned with the meal description. By ranking
the USDA hits according to their dot product with each of the
tagged food segments, rather than using the FST, we can boost
the top-5 recall from 91.9 to 96.2. Using the new CNN, we
boost the recall even further to 98.5.

We observe even clearer gains when we apply the new
CNN architecture and re-ranking algorithm to the larger all-
food dataset, which is what the system will be using at test time
with real users. In Table 2, the top row applies the baseline
CNN with ranking to predict the top-5 USDA matches. Its top-
5 recall is approximately one-third that of the newer CNN in
the other three rows. The last row, which ranks foods from both
the USDA and Minnesota databases, still has comparably high
performance despite the presence of 18k foods.



Model MAP Recall
Baseline CNN + FST decode 86.9 91.9

Baseline CNN + ranking 83.4 96.2
New CNN + ranking 87.8 98.5

Table 1: FST decoding compared to the new ranking method
described in this work on 101 foods data. These results are
high because we collected 16k meals for 101 foods, whereas we
only used 4k for the other meals with up to 2570 foods.

Model DB MAP Recall
Baseline CNN + ranking USDA 6.73 20.7

New CNN + ranking USDA 20.6 58.1
New CNN + re-ranking USDA 31.3 64.0
New CNN + re-ranking USDA + Minn. 31.2 63.8

Table 2: Evaluation of two CNN models (baseline and the newer
model presented in this work) and two ranking approaches
(ranking once vs. re-ranking) on the all-food dataset.

4.3. Ranking Performance per Meal

We evaluated the best model (i.e., the new CNN trained on full
meal descriptions plus aligned segments, with re-ranking for
retrieving USDA hits) on all eight meals in addition to the all-
food dataset, where each model is trained/tested only on its meal
category. Note that there is a correlation between the number
of foods in the meal category and the difficulty of the ranking
task, since dinner has more foods than any other meal (2,570)
and has the lowest MAP and recall scores, whereas salads have
the fewest foods (232) and achieve a recall of 92.5.

Meal Train Acc. Test Acc. MAP Recall
Breakfast 93.1 84.4 31.8 64.8

Dinner 91.7 84.4 20.0 45.1
Salad 94.5 90.6 66.6 92.5

Sandwiches 91.2 86.3 37.5 76.5
Smoothies 93.7 87.5 39.3 75.1
Pasta/Rice 91.9 85.6 21.8 51.9

Snacks 92.8 85.6 32.3 67.3
Fast Foods 93.5 85.7 34.1 70.3
All Foods 96.0 94.1 31.3 64.0

Table 3: Binary verification performance on training and held-
out test data, MAP scores, and top-5 USDA recall per meal.

4.4. Character-based Models

To evaluate how well the standard word-based model compares
to the character-based models on noisy data, we artificially in-
duced typos in the test set. The original test data was clean
so the performance was the same with the standard word-based
model as well as when we augmented it with character-based
models. In Table 4, the last two rows apply the word-based
model if there are no OOVs, use character-based models for
food segments consisting of one OOV token, and combine the
rankings generated by both models for food segments contain-
ing OOV and in-vocabulary words by taking the maximum sim-
ilarity value per USDA food. We constructed a test set where
10% of the characters in each meal description were randomly
deleted, substituted, or inserted. The error type, the index of the

modification, and the new character for substitutions and inser-
tions were all randomly selected. We see that the charCNN has
the highest MAP and top-5 recall scores on the noisy test data.

Model MAP Recall
Baseline Levenshtein 6.27 15.5

Char CNN 8.65 17.1
Word CNN 12.0 26.3

Word CNN + Levenshtein 13.4 29.1
Word CNN + Char CNN 13.8 30.0

Table 4: Comparison of character-based approaches to the ba-
sic word-based CNN model on the all-food data with 10% typos.

5. Discussion
To better understand the behavior of our models, we qualita-
tively analyze the top predicted USDA hits at test time, as well
as the learned embeddings. In Table 5, we observe reasonable
top-3 USDA foods predicted for each tagged food segment by
the word-based model augmented with charCNN for the meal
“I had a bowl of cherios with a banana and a glass of 1% milk.”
Note that since “cheerios” is misspelled as “cherios,” the word
model would predict matches for UNK as it is an OOV word;
however, the charCNN correctly handles the error. In addition,
we demonstrate that the charCNN is able to learn meaningful
word embeddings. In Table 6, we see that the top-5 neighbors of
the USDA food item are intuitive, where we computed the near-
est neighbors by minimizing the Euclidean distance between a
given food’s embedding and all the other USDA foods.

Food Top-1 Top-2 Top-3
cherios cheerios oat cluster cheerios frosted cheerios
banana banana banana pudding banana pepper

1% milk 1% milk dry whole milk milk low sodium
Table 5: Top-3 predicted USDA hits for tagged foods in the meal
“I had a bowl of cherios with a banana and a glass of 1% milk.”

Top-5 USDA Foods
beef new zealand imported kidney raw
beef new zealand imported inside raw

beef new zealand imported sweetbread raw
beef new zealand imported heart raw

beef new zealand imported manufacturing beef raw
Table 6: Top-5 nearest USDA neighbors, based on Euclidean
distance, to the food “beef new zealand imported tongue raw.”

6. Conclusion
We have demonstrated that our new CNN architecture with
ranking outperforms the baseline CNN model with FST decod-
ing. In addition, we have shown that character-based models
effectively handle misspelled words. In our future work, we
will explore jointly learning word and character embeddings,
and we will evaluate our models on spoken data more similar to
how the deployed system will be used by real users at test time.



7. References
[1] Y. Wang and M. Beydoun, “The obesity epidemic in the United

States–gender, age, socioeconomic, racial/ethnic, and geographic
characteristics: A systematic review and meta-regression analy-
sis,” Epidemiologic reviews, vol. 29, no. 1, pp. 6–28, 2007.

[2] C. Ogden, M. Carroll, B. Kit, and K. Flegal, “Prevalence of child-
hood and adult obesity in the United States, 2011-2012,” Jama,
vol. 311, no. 8, pp. 806–814, 2014.

[3] E. Finkelstein, J. Trogdon, J. Cohen, and W. Dietz, “Annual med-
ical spending attributable to obesity: Payer-and service-specific
estimates,” Health affairs, vol. 28, no. 5, pp. w822–w831, 2009.

[4] J. Ingber, “My fitness pal: A guide to an accessible fitness tool,”
2014.

[5] M. Korpusik, Z. Collins, and J. Glass, “Semantic mapping of nat-
ural language input to database entries via convolutional neural
networks,” Proceedings of IEEE Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2017.

[6] M. Korpusik, N. Schmidt, J. Drexler, S. Cyphers, and J. Glass,
“Data collection and language understanding of food descrip-
tions,” Proceedings of 2014 IEEE Spoken Language Technology
Workshop (SLT), 2014.

[7] M. Korpusik, C. Huang, M. Price, and J. Glass, “Distributional
semantics for understanding spoken meal descriptions,” Proceed-
ings of 2016 IEEE Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2016.

[8] Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” arXiv preprint arXiv:1408.5882, 2014.

[9] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for natural language processing,” arXiv
preprint arXiv:1606.01781, 2016.

[10] Y. Xiao and K. Cho, “Efficient character-level document classi-
fication by combining convolution and recurrent layers,” arXiv
preprint arXiv:1602.00367, 2016.

[11] L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng, “Text
matching as image recognition,” 2016.

[12] Z. Wang, H. Mi, and A. Ittycheriah, “Sentence similarity learn-
ing by lexical decomposition and composition,” arXiv preprint
arXiv:1602.07019, 2016.

[13] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network
architectures for matching natural language sentences,” in Pro-
ceedings of Advances in neural information processing systems
(NIPS), 2014, pp. 2042–2050.

[14] W. Yin, H. Schütze, B. Xiang, and B. Zhou, “Abcnn: Attention-
based convolutional neural network for modeling sentence pairs,”
arXiv preprint arXiv:1512.05193, 2015.

[15] W. Yin, S. Ebert, and H. Schütze, “Attention-based convolu-
tional neural network for machine comprehension,” arXiv preprint
arXiv:1602.04341, 2016.

[16] W. Ling, I. Trancoso, C. Dyer, and A. Black, “Character-based
neural machine translation,” arXiv preprint arXiv:1511.04586,
2015.

[17] Y. Wu, M. Schuster, Z. Chen, Q. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[18] C. Santos and B. Zadrozny, “Learning character-level representa-
tions for part-of-speech tagging,” in Proceedings of the 31st In-
ternational Conference on Machine Learning (ICML), 2014, pp.
1818–1826.

[19] Y. Kim, Y. Jernite, D. Sontag, and A. Rush, “Character-aware neu-
ral language models,” arXiv preprint arXiv:1508.06615, 2015.

[20] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Proceedings of Advances in
neural information processing systems (NIPS), 2015, pp. 649–
657.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[24] M. Korpusik and J. Glass, “Spoken language understanding for a
nutrition dialogue system,” IEEE Transactions on Audio, Speech,
and Language Processing, 2017.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their composi-
tionality,” in Proceedings of Neural Information Processing Sys-
tems (NIPS), 2013, pp. 3111–3119.

[26] A. Marzal and E. Vidal, “Computation of normalized edit distance
and applications,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 15, no. 9, pp. 926–932, 1993.

[27] R. Srivastava, K. Greff, and J. Schmidhuber, “Highway net-
works,” arXiv preprint arXiv:1505.00387, 2015.

[28] I. M. Buzzard and D. Feskanich, “Maintaining a food composi-
tion data nase for multiple research studies: The NCC food table,”
Rand et al., reference, vol. 72, pp. 115–122, 1987.


