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Abstract

We provide tight information-theoretic lower bounds for the welfare maximization problem
in combinatorial auctions. In this problem the goal is to partition m items between k bidders in
a way that maximizes the sum of bidders’ values for their allocated items. Bidders have complex
preferences over items expressed by valuation functions that assign values to all subsets of items.

We study the “black box” setting in which the auctioneer has oracle access to the valuation
functions of the bidders. In particular, we explore the well-known value queries model in which
the permitted query to a valuation function is in the form of a subset of items, and the reply is
the value assigned to that subset of items by the valuation function.

We consider different classes of valuation functions: Submodular, subadditive, and superad-
ditive. For these classes it has been shown that one can achieve approximation ratios of 1 − 1

e
,

1
√

m
, and

√

log m

m
, respectively, via a polynomial (in n and m) number of value queries. We

prove that these approximation factors are essentially the best possible: For any fixed ε > 0, a
(1 − 1/e + ε)-approximation for submodular valuations or an 1

m
1/2−ε -approximation for subad-

ditive valuations would require exponentially many value queries, and a log1+ε
m

m
-approximation

for superadditive valuations would require a superpolynomial number of value queries.
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1 Introduction

Combinatorial auctions are a central research area at the intersection of in economics, game the-
ory, and computer science. The welfare maximization problem in combinatorial auctions is an
abstraction of many computational and economic resource-allocation problems. In this problem,
an auctioneer sells a set M of m items to a set N of k bidders. The value of bidder i ∈ N for any
subset (bundle) of items is given by a valuation set function vi : 2M → R+, where vi(S) represents
i’s maximum willingness to pay for the bundle S. The two standard assumptions on each vi are
that if S ⊆ T then vi(S) ≤ vi(T ) (monotonicity), and that vi(∅) = 0 (normalization). The objec-
tive is to partition M into k disjoint subsets S1, S2, . . . , Sk in a way that maximizes the expression
∑

1≤i≤k vi(Si) (i.e., the social welfare).
Algorithms for maximizing welfare in combinatorial auctions are required to be polynomial

in the natural parameters of the problem, m and k. However, since the “input” (the valuation
functions) is of exponential size one must specify how it can be accessed. Most works in this field
have taken a “black box” approach in which bidders’ valuation functions are accessed via oracles
that can answer specific type of queries. Three types of queries have been considered [1, 2, 5]:

• Value queries: The query to a valuation function vi is in the form of a bundle S ⊆ M , and
the response is vi(S).

• Demand queries: The query to a valuation function vi is in the form of a price vector
p = (p1, ..., pm) and the response is the bundle T most demanded by vi given these prices.
That is, T = argmaxS⊆Mvi(S) −∑j∈S pj.

• General queries: We allow any type of query (to single valuation functions). This model
captures the communication complexity (between the bidders) of the problem. Due to its
strength it is mostly interesting for proving lower bounds.

Value queries are strictly less powerful than demand queries, which, in turn, are strictly less
powerful than general queries [1, 2, 14]. In this paper we focus our attention on the value-queries
model.

It has been shown that computing an optimal solution for social-welfare maximization requires
an exponential number of queries even in the general queries model [13]. Hence, we are interested in
the approximability of this problem. For the general case, the approximability of the problem is well-
understood in all models [1, 13]. Researchers have also studied the approximability of the problem
for restricted classes of valuation functions. Two families of such classes, that have natural economic
interpretations [11, 5], have been considered: Subadditive functions, and superadditive functions.
A set function f : 2M → R+ is subadditive iff for any two sets S and T , f(S) + f(T ) ≥ f(S ∪ T ),
and is superadditive iff for any two disjoint sets S and T , f(S) + f(T ) ≤ f(S ∪ T ). An important
special case of subadditive functions are submodular functions. A set function f is submodular iff
for any two sets S and T , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Submodular functions (that are
monotone and normalized) are also reasonable to consider from an economic perspective as they
characterize functions with decreasing marginal utilities [11].

We present tight information-theoretic lower bounds for submodular, subadditive, and super-
additive valuation functions in the value query model. We prove the following theorems:

Theorem: For any fixed ε > 0, achieving an approximation ratio of 1 − 1
e + ε for welfare-

maximization with submodular functions requires an exponential number of value queries.

This matches the (1− 1
e )-approximation (achieved with a polynomial number of value queries)

recently shown by Vondrák [17], who improved over the 1
2 -approximation shown by Lehmann et
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al. [11]. (We note that this problem can be formalized as the problem of maximizing a submodular
function subject to matroid constraints. Hence, the greedy algorithm developed by Fisher et al. [16]
provides a 1

2 -approximation for this problem). The only previously known information-theoretic
lower bound for this problem was 1 − O( 1

m), in the general queries model. Our lower bound
strengthens the 1− 1

e + ε lower bound, dependent on P 6= NP proven by Khot et al. [10]. We stress
that our lower bound is independent of any computational complexity assumptions and holds even
for algorithms of unbounded computational power, that are bounded only in terms of the number
of value queries they can make. Also, we remark that the same inapproximability result does not
hold in stronger query models – it is known that (1 − 1/e + ε)-approximation is possible with
polynomially many demand queries [7].

Theorem: For any fixed ε > 0, achieving an approximation ratio of 1

m
1
2
−ε

for welfare-maximization

with subadditive functions requires an exponential number of value queries.

This matches the upper bound of 1√
m

presented by Dobzinski et. al [5] (achieved using a

polynomial number of value queries). The previously known lower bound in the value-queries model
was 1

m
1
4

[4]. In fact, our lower bound holds even for the more restricted subclass of fractionally

subadditive valuations [6], introduced in [12] under the name of XOS.

Theorem: For any fixed ε > 0, achieving an approximation ratio of log m1+ε

m for welfare-maximization
with superadditive functions requires a super-polynomial number of value queries.

This nearly matches the upper bound of
√

log m
m presented by Holzman et. al [9] (achieved via

a polynomial number of value queries). A similar lower bound was known for general valuation
functions [1, 2]. We extend this lower bound to the restricted class of superadditive functions. In
fact, the lower bound holds for a superadditive analogue of fractionally subadditive functions (that
is strictly contained in the class of superadditive valuation functions).

2 Value-Query Complexity of Submodular Welfare Maximization

In this section, we construct an example showing that it is impossible to achieve an approximation
factor better than 1−1/e for the submodular welfare problem, using a polynomial number of value
queries. More precisely, we prove the following.

Theorem 2.1. For any fixed β > 0 and k ≥ 2, a (1− (1− 1/k)k + β)-approximation algorithm for
k players with submodular valuation functions requires exponentially many value queries.

Since 1− (1− 1/k)k is arbitrarily close to 1− 1/e for large enough k, this implies the following.

Corollary 2.2. For any fixed β > 0, there is no (1 − 1/e + β)-approximation for an arbitrary
number of players, using a subexponential number of queries.

We note that our examples use the same submodular valuation function for all players, just
like in the NP-hardness result of [10]. Our construction is different, however. While the hardness
reduction of [10] uses explicit coverage-type submodular functions, our valuation functions are not
exactly of the coverage type. In fact, our construction is inspired by a lower bound developed by
Feige et. al [8] for inapproximability of maximizing non-monotone submodular functions. In the
following, we describe the construction.

Consider a k-uniform hypergraph H = (X,E) and a function f : 2X → R+ where f(S) is
the number of hyperedges incident with the set of vertices S. This is a coverage-type submodular
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function. The idea is that it is hard to distinguish instances where H is a complete k-partite
hypergraph (and allocating one part to each player results in a “perfect solution”), and instances
where H is a complete k-uniform hypergraph (and then there is no “perfect solution”). But in
order to make the example work, we have to modify the coverage-type functions slightly.

We consider a ground set X partitioned into X1 ∪ X2 ∪ . . . ∪ Xk. The functions f(S) that
we define depend only on the fractions of Xi that S contains: xi = |S ∩ Xi|/|Xi|. To simplify
the notation, we work with continuous functions f̃(x1, . . . , xn). The following lemma states the
properties that we need f̃(x1, . . . , xn) to satisfy.

Lemma 2.3. Let X = X1 ∪ X2 ∪ . . . ∪ Xn as above and let f̃ : [0, 1]n → R be a function with
continuous first partial derivatives, and second partial derivatives almost everywhere. Define a
discrete function f : X → R so that

f(S) = f̃

( |S ∩ X1|
|X1|

, . . . ,
|S ∩ Xn|
|Xn|

)

.

1. If ∂f̃
∂xi

≥ 0 everywhere for each i, then the function f is monotone.

2. If ∂2f̃
∂xi∂xj

≤ 0 almost everywhere 1 for any i, j, then the function f is submodular.

Proof. For monotonicity, it’s sufficient to observe that if ∂f
∂xi

≥ 0, then f̃ is non-decreasing in each
coordinate. Hence, adding elements cannot decrease the value of f .

For the submodularity condition, fix an element in a ∈ Xi and consider a set S parameterized
by xi = |S ∩ Xi|/|Xi|. The marginal value of a added to S is equal to

fS(a) = f̃(x1, . . . , xi +
1

|Xi|
, . . . , xn) − f̃(x1, . . . , xi, . . . , xn)

=

∫ 1/|Xi|

0

∂f̃

∂xi
(x1, . . . , xi + t, . . . , xn)dt.

We want to prove that fS(a) cannot increase by adding elements to S, i.e. by increasing any

coordinate xj . Because ∂f̃
∂xi

is continuous and its derivative along xj,
∂2f̃

∂xi∂xj
, is non-positive except

at finitely many points, ∂f̃
∂xi

is non-increasing in xj. By shifting the entire integral to a higher value
of xj, the marginal value cannot increase.

Hence, we need our continuous functions to satisfy ∂f
∂xi

≥ 0 and ∂2f
∂xi∂xj

≤ 0 for all i, j ∈ [k],

which implies monotonicity and submodularity in the discrete case. We call such functions smooth
submodular. To shorten notation, we write f(x) = f(x1, . . . , xn).

In each instance, all players have the same valuation function. We find two functions f, g
such that we have f(x) = g(x) whenever maxi,j |xi − xj | ≤ ε. This will be the case for any
subexponential number of queries with high probability, assuming that the underlying partition is
random and unknown to the algorithm. Then a typical query is partitioned into k equal parts by
X1, . . . ,Xk, and a deviation of constant ε from the expectation occurs with exponentially small
probability, which can be proved by standard Chernoff bounds. (It should be noted here that we
keep k and ε constant, while the number of vertices n tends to infinity.) Therefore, f and g are
indistinguishable by a subexponential number of queries. If the gap between the optima of f and
g is close to 1 − (1 − 1/k)k, this implies that any approximation algorithm improving this factor
would require an exponential number of value queries. Therefore it remains to prove the following.

1To be more precise, on any axis-parallel line there are only finitely many points where ∂2f̃

∂xi∂xj
is not defined.
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Lemma 2.4. For any β > 0 and integer k ≥ 2, there is ε > 0 and two smooth submodular functions
f, g : [0, 1]k → R+ such that

• If maxi,j |xi − xj| ≤ ε, then f(x) = g(x).

• max{∑i f(xi1, . . . , xik) | ∀j;
∑

i xij = 1} ≥ (1 − β)k.

• max{∑i g(xi1, . . . , xik) | ∀j;
∑

i xij = 1} ≤ (1 − (1 − 1/k)k + β)k.

Proof. We start by considering two smooth submodular functions, motivated by the examples of
k-uniform hypergraphs that we discussed above.

• f(x) = 1 −∏k
i=1(1 − xi).

• g(x) = 1 − (1 − x̄)k, where x̄ = 1
k

∑k
i=1 xi.

The optimal solution with valuation function f is xii = 1, xij = 0 for i 6= j. This way, each
player gets the maximum possible value 1. For g, on the other hand, the value depends only on the
average of the coordinates x̄. By the concavity of g, the optimum solution is to allocate x̄ = 1/k
to each player, which gives her a value of 1 − (1 − 1/k)k.

It remains to perturb the functions so that f(x) = g(x) for vectors satisfying maxi,j |xi−xj| ≤ ε.
Let h(x) denote the difference of the two functions,

• h(x) = f(x) − g(x) = (1 − x̄)k −∏k
i=1(1 − xi).

Again, we denote x̄ = 1
k

∑k
i=1 xi. Also, let δ = maxi,j |xi −xj|. First, we estimate h(x) and its first

derivatives in terms of x̄ and δ. We use very crude bounds, to simplify the analysis.

Claim.

1. h(x) ≤ kδ(1 − x̄)k−1.

2. h(x) ≥ k−4δ2(1 − x̄)k−2.

3. | ∂h
∂xj

| ≤ kδ(1 − x̄)k−2, i.e. | ∂h
∂xj

| ≤ k3(1 − x̄)k/2−1
√

h(x).

1. We have h(x) = (1− x̄)k −∏k
i=1(1− xi). If kδ ≥ 1− x̄, we get immediately h(x) ≤ (1− x̄)k ≤

kδ(1 − x̄)k−1. So let’s assume kδ < 1 − x̄. Then, since xi ≤ x̄ + δ for all i, we get

h(x) ≤ (1 − x̄)k − (1 − x̄ − δ)k = (1 − x̄)k

(

1 −
(

1 − δ

1 − x̄

)k
)

≤ (1 − x̄)k
kδ

1 − x̄
.

2. For a lower bound on h(x), suppose that δ = x2 − x1 and define η = 1
k−2(x̄− 1

2(x1 + x2)). I.e.,
x1 = x̄ − (k − 2)η − δ/2, x2 = x̄ − (k − 2)η + δ/2, and the average of the remaining coordinates
is x̄ + 2η. By the arithmetic-geometric mean inequality,

∏

i6=1,2(1 − xi) is maximized when these
variables are all equal:

h(x) ≥ (1 − x̄)k − (1 − x̄ + (k − 2)η +
1

2
δ)(1 − x̄ + (k − 2)η − 1

2
δ)(1 − x̄ − 2η)k−2

= (1 − x̄)k − (1 − x̄ + (k − 2)η)2(1 − x̄ − 2η)k−2 +
1

4
δ2(1 − x̄ − 2η)k−2.
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Again by the arithmetic-geometric inequality, the first term is always larger than the second term.
If η ≤ 1

k (1 − x̄), we are done because then the last term is at least 1
4e2 δ2(1 − x̄)k−2. So we can

assume η > 1
k (1 − x̄). In this case, we throw away the last term and write

h(x) ≥ (1 − x̄)k − (1 − x̄ + (k − 2)η)2(1 − x̄ − 2η)k−2

= (1 − x̄)k

(

1 −
(

1 + (k − 2)
η

1 − x̄

)2(

1 − 2η

1 − x̄

)k−2
)

≥ (1 − x̄)k

(

1 −
(

1 +
η

1 − x̄

)2(k−2)(

1 − η

1 − x̄

)2(k−2)
)

= (1 − x̄)k

(

1 −
(

1 − η2

(1 − x̄)2

)2(k−2)
)

≥ (1 − x̄)k

(

1 −
(

1 − 1

k2

)2(k−2)
)

≥ 1

k2
(1 − x̄)k.

We observe it always holds that δ ≤ k(1 − x̄): If the minimum coordinate is xmin, we have
x̄ ≤ 1

kxmin + k−1
k · 1, hence xmin ≥ kx̄ − (k − 1) and δ ≤ 1 − xmin ≤ k(1 − x̄).

Consequently, h(x) ≥ k−2(1 − x̄)k ≥ k−4δ2(1 − x̄)k−2.

3. Let δ = maxi,j |xi − xj |. We estimate the partial derivative

∂h

∂xj
=
∏

i6=j

(1 − xi) − (1 − x̄)k−1.

Define η = 1
k−1(xj − x̄). I.e., xj = x̄ + (k − 1)η and the average of the remaining coordinates is

x̄ − η. By the arithmetic-geometric inequality,

∂h

∂xj
≤ (1 − x̄ + η)k−1 − (1 − x̄)k−1 = (1 − x̄)k−1

(

(

(1 +
η

1 − x̄

)k−1

− 1

)

.

Since η = 1
k−1(xj − x̄) ≤ 1

k−1(1 − x̄), we can estimate (1 + η
1−x̄)k−1 ≤ 1 + 2k η

1−x̄ . Also, we know
that all coordinates differ from x̄ − η by at most δ, in particular xj = x̄ + (k − 1)η ≤ x̄ − η + δ,
hence kη ≤ δ and

∂h

∂xj
≤ (1 − x̄)k−1 · 2k η

1 − x̄
≤ 2δ(1 − x̄)k−2.

For a lower bound, it’s enough to observe that each coordinate is at most x̄ + δ, and so

∂h

∂xj
≥ (1 − x̄ − δ)k−1 − (1 − x̄)k−1

= (1 − x̄)k−1

(

(

1 − δ

1 − x̄

)k−1

− 1

)

≥ (1 − x̄)k−1

(

−(k − 1)
δ

1 − x̄

)

= −(k − 1)δ(1 − x̄)k−2

assuming that (k − 1) δ
1−x̄ ≤ 1; otherwise we get the same bound directly from ∂h

∂xj
≥ −(1 − x̄)k−1.

This finishes the proof of the claim.
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We return to our construction. We define f̃(x) = f(x)−φ(h(x)) where φ : R → R is defined so
that φ(t) = t for small t ≥ 0, then φ(t) is increasing and concave with a controlled second derivative
and finally φ(t) is bounded by a small constant everywhere. More precisely,

• For t ∈ [0, ε1], we set φ(t) = t. We choose ε1 = kε. I.e., for maxi,j |xi − xj | ≤ ε, we have
h(x) ≤ ε1 by Claim 1 and then f̃(x) = g(x).

• For t ∈ [ε1, ε2], the first derivative of φ is continuous at t = ε1 and its second derivative is
φ′′(t) = −α/t for t ∈ [ε1, ε2]. Hence,

φ′(t) = 1 −
∫ t

ε1

α

τ
dτ = 1 − α ln

t

ε1
.

We choose α = 2/ ln 1
ε1

and ε2 =
√

ε1, so that φ′(ε2) = 0. Since φ′(t) ≤ 1 everywhere, we have
φ(ε2) ≤ ε2.

• For t > ε2, we set φ(t) = φ(ε2).

Hence, we have 0 ≤ φ(t) ≤ ε2 everywhere and f̃(x) = f(x) − φ(h(x)) ≥ f(x) − ε2. Next, we want
to show that we didn’t corrupt the monotonicity and submodularity of f too badly. We have

∂f̃

∂xj
=

∂f

∂xj
− φ′(h)

∂h

∂xj
= (1 − φ′(h))

∂f

∂xj
+ φ′(h)

∂g

∂xj
.

Exactly as in the case of 2 players, 0 ≤ φ′(h) ≤ 1, and ∂f
∂xj

, ∂g
∂xj

are both nonnegative. So, ∂f̃
∂xj

≥ 0.

For the second partial derivatives, we get

∂2f̃

∂xi∂xj
=

∂2f

∂xi∂xj
− φ′(h)

∂2h

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj

= (1 − φ′(h))
∂2f

∂xi∂xj
+ φ′(h)

∂2g

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj
.

The first two terms form a convex combination of non-positive values. To control the third term,

we have |φ′′(h)| ≤ α/h. We also showed
∣

∣

∣

∂h
∂xi

∣

∣

∣
≤ k3(1 − x̄)k/2−1

√

h(x) (Claim 3). We can conclude

that
∂2f̃

∂xi∂xj
≤
∣

∣

∣

∣

φ′′(h)
∂h

∂xi

∂h

∂xj

∣

∣

∣

∣

≤ αk6(1 − x̄)k−2.

We need to make the second partial derivatives non-positive. Since ∂2g
∂xi∂xj

= −k−1
k (1 − x̄)k−2, it is

enough to add a suitable multiple of g to both functions: f̂ = f̃ + 2αk6g, ĝ = (1 + 2αk6)g. Then
f̂ , ĝ are smooth submodular.

Recall that we have α = 2/ ln 1
kε . For a given β > 0, we choose ε = 1

ke−4k6/β, so that β = 2αk6

and we increase g only by a factor of 1 + β. We also get ε2 =
√

kε ≤ β, and therefore f̂(x) ≥
f̃(x) ≥ f(x) − ε2 ≥ f(x) − β. Thus f̂ and ĝ satisfy the conditions of the lemma.

3 Value-Query Complexity of Subadditive Welfare Maximization

In this section, we construct an example showing that it is impossible to achieve an approximation
factor asymptotically better than 1√

m
for the subadditive welfare problem, using a polynomial

number of value queries.
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In fact, we prove our result for the more restricted class of fractionally subadditive valuation
functions [12, 6] that is known to strictly contain all submodular valuation functions. A fractionally
subadditive function is the pointwise maximum over a set of linear valuation functions.

Definition 3.1. A linear valuation function (also known as additive) is a set function a : 2M → R+

that assigns a non-negative value to every singleton {j ∈ M}, and for all S ⊆ M it holds that
a(S) =

∑

j∈S a({j}).

Definition 3.2. A fractionally subadditive function is a set function f : SM → R+, for which there
is a finite set of linear valuation functions A = {a1, ..., al} such that f(S) = maxai∈A ai(S), for
every S ⊆ M .

We prove the following theorem.

Theorem 3.1. For any fixed ε > 0, an 1

m
1
2
−ε

-approximation algorithm for fractionally subadditive

valuation functions requires exponentially many value queries.

Proof. We shall use probabilistic construction arguments to show that any algorithm that obtains
an 1

m
1
2
−ε

-approximation to the social-welfare requires an exponential number of value queries.

Fix a small constant δ > 0 (to be determined later). We shall construct a combinatorial auction
with m items and k =

√
m bidders. For every S let aS be the linear valuation function that assigns

a value of 1 to each item j ∈ S, and 0 to each item j /∈ S. Let ā be the additive valuation that
assigns every item j ∈ [m] a value of 1+δ

m
1
2
−δ

.

Let v1, ..., vk be an k-tuple of valuation functions defined as follows:

vi = max{aS}|S|≤(1+δ)m2δ ∪ {ā}

Choose, uniformly at random, a partition of the items into
√

m disjoint bundles of items
T1, . . . , Tk such that for each i |Ti| =

√
m. Let v′1, . . . , v

′
k be the k-tuple of valuation functions

defined as follows:

v′i = max{vi, aTi
}

We shall now prove that for every player i, it takes an exponential number of value queries to
distinguish between the case that i’s valuation function is vi and the case that i’s valuation function
is v′i.

It is easy to see that the maximum social-welfare attainable if the valuation functions are
v1 . . . , vk is O(m

1

2
+2δ), while the optimal social-welfare if the valuation functions are v′1 . . . , v′k is m.

Hence, the fact that it requires an exponential number of value-queries to distinguish between the
valuation-functions profiles v1 . . . , vn and v′1 . . . , v′n implies that one cannot get an approximation

ratio better than O(m
1

2
−2δ) in less than an exponential number of value queries.

Consider a specific player i. Fix a bundle S of size smaller or equal to m
1

2
+δ. It holds that

vi(S) = max{|S|, (1 + δ)m2δ}. v′i might assign a value higher than vi to S but only if

|S ∩ Ti| > (1 + δ)m2δ .

Using standard probabilistic arguments, and relying on the Chernoff bounds, it can be shown
that Pr[|S ∩ Ti| > (1 + δ)m2δ ] is exponentially small.

Now, consider a bundle S of size greater than m
1

2
+δ. vi will assign S the value of (1 + δ) |S|

m
1
2
−δ

.

v′i might assign S a higher value, but only if
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|S ∩ Ti| > (1 + δ)
|S|

m
1

2
−δ

.

Again, using standard probabilistic arguments it can be shown that Pr[|S ∩ Ti| > (1 + δ) |S|
m

1
2
−δ

]

is exponentially small.
We conclude that for every bundle S, only with exponentially small probability does one gather

sufficient information to distinguish between the case that i’s valuation is vi and the case that it is
v′i. Hence, it might require an exponential number of value queries to distinguish between vi and
v′i. This concludes the proof of the theorem.

Remark 3.2. The proof of Theorem 3.1 can easily be made to hold for the case that all bidders
have the same valuation functions.

4 Value-Query Complexity of Superadditive Welfare Maximiza-

tion

In this section, we construct an example showing that it is impossible to achieve an approximation
factor asymptotically better than log m

m for the superadditive welfare problem, using a polynomial
number of value queries.

The construction of the example will be done in two steps. First, we shall define a subclass of
superadditive valuation functions we term min-linear functions. This is a superadditive analogue
of fractionally subadditive functions [12, 6]. We shall then prove our lower bound for this more
restricted class.

Definition 4.1. A min-linear function is a set function f : 2M → R+ such that there is a finite set
of linear valuation functions A = {a1, . . . , al} such that for every S ⊆ M f(S) = minai∈A ai(S).

It is easy to show (and analogous to the proofs in [12, 11] that min-linear functions are contained
in the class of superadditive valuation functions, and are a superclass of supermodular valuation
functions. Simple examples demonstrate that these containments are strict.

Claim 4.1. Any min-linear function is superadditive.

Proof. Let f be a min-linear function. Let S and T be two disjoint subsets of items. By definition
there are linear functions aS , aT , and aS∪T in A for which the value of S, T , and S∪T , is minimized.
Therefore, it must hold that aS(S) ≤ aS∪T (S) and aT (T ) ≤ aS∪T (T ). Hence:

f(S ∪ T ) = aS∪T (S ∪ T ) = aS∪T (S) + aS∪T (T ) ≥ aS(S) + aT (T ) = f(S) + f(T ).

Definition 4.2. A set function f is supermodular iff for any two sets S and T , f(S) + f(T ) ≤
f(S ∪ T ) + f(S ∩ T ).

Claim 4.2. Any supermodular valuation function is a min-linear function.

Proof. Let f be a supermodular valuation function. Fix an order on the items, w.l.o.g., 1, ...,m.
For every set S we define a linear function aS as follows: For every j ∈ S aS({j}) = f({1, ..., j}) −
f({1, ..., j − 1}). For every j /∈ S aS({j}) = ∞, where ∞ represents a very high number (in
particular f(M) << ∞). It is easy to see that aS(S) = f(S) for any S. We want to show that f
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is min-linear and the finite set of linear functions is A = {aT }T⊆M . For this, we need to show that
aS(S) = minaT ∈A aT (S).

Observe, that for any S, T such that S is not contained in T it is impossible that the minimum
for S is achieved by aT (because for some j ∈ S aT ({j}) = ∞). So, we are left with the case that
S ⊆ T . Here we exploit the well known fact that monotone supermodular functions have increasing
marginal utilities. That is, if U ⊂ V ⊆ M , and j is in neither U nor V , then f(U ∪ {j}) − f(U) ≤
f(V ∪{j})−f(V ). It is easy to see that this implies that for S ⊆ T , for any j ∈ S aS({j}) ≤ aT ({j}).
Hence, aS is indeed the linear function for which the minimum is achieved (for bundle S). This
implies that f = min A.

We are now ready to prove the following theorem:

Theorem 4.1. For any ε > 0, a log1+ε m
m -approximation algorithm for min-linear valuation func-

tions requires a superpolynomial number of value queries.

Proof. We use a probabilistic construction. Fix ε > 0. We construct an auction with |M | =
m + m

log1+ε m
items and |N | = k = m

log1+ε m
. M consists of two disjoint sets M1 and M2, such that

|M1| = m and |M2| = m
log1+ε m

. Each bidder i ∈ [k] is associated with a unique item di in M2. We

partition M1, uniformly at random, into k = m
log1+ε m

bundles T1, ..., Tk of equal size (i.e., of size

log1+ε m).
For each bidder i, let bi be the linear valuation function that assigns a value of 1 to di and 0 to

all other items. By aS , we denote a linear function that assigns a value of 1 to each item in S and
0 to all other items.

Let v1, ..., vk be the k-tuple of valuation functions defined as follows:

vi = min{bi} ∪ {aS : S ⊆ M1, |S| =
m

2
}.

This function has a very simple interpretation: It assigns a value of 1 to every set that contains di

and more than m
2 items in M1. It assigns 0 to all other bundles.

Let v′1, ..., v
′
k be the k-tuple of valuation functions defined as follows:

v′i = min{bi} ∪ {aS : S ⊆ M1, |S| =
m

2
& S ∩ Ti 6= ∅}.

This too has a simple interpretation: It assigns a value of 1 to every set that contains di and Ti, or
di and more than m

2 items in M1. It assigns 0 to all other sets.
We shall show that it might take a super-polynomial number of value queries to distinguish

between the case that i’s valuation function is vi and the case that it is v′i. It is easy to see that
if the valuation functions of the bidders are v1, ..., vk then the optimal social welfare is 1. On the
other hand, if the valuation functions of the players are v′1, ..., v

′
k then the optimal social welfare

value is m
log1+ε m

(assign every bidder i the bundle that contains di and Ti). Hence, it follows

that achieving an approximation of log1+ε m
m requires a super-polynomial number of value queries

(required to distinguish between v1, ..., vk and v′1, ..., v
′
k).

Observe that, for each i, vi and v′i assign exactly the same value to all bundles, except for
bundles that contain di and at most m

2 items in M1. Also observe, that the difference is that vi

assigns a value of 0 to all these bundles, while v′i assigns a value of 1 to such bundles that contain Ti

(and 0 to all other such sets). What is the probability that a set of size at most m
2 in M1 contains

Ti? Let S be a bundle in M1 of size at most m
2 . Recall that Ti is uniformly distributed over all

sets of size log1+ε m. For every item in Ti, the probability that it is contained in S is at most 1
2 .

Therefore,
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Pr[Ti ⊆ S] ≤ 1

2log1+ε m

This implies that 2log1+ε m, i.e., a super-polynomial number of value queries, may be required
to distinguish between vi and v′i. The theorem follows.

Remark 4.2. The proof of Theorem 4.1 can easily be made to hold for the case that all bidders
have the same valuation functions.

5 Open Questions

We conclude by the following two open questions:

• For the case of submodular valuation functions, the only information-theoretic lower bound in
the models of general and demand queries is 1−O(1/m). There are indications that suggest
the existence of a constant (1− ε) lower bound (an NP-hardness result [3], and an integrality
gap in [4]). Proving such a lower bound in any of these two models is a very interesting open
question and seems to require non-trivial combinatorial constructions.

• We have presented tight lower bounds in the value query model for submodular and sub-

additive valuation functions. There is still a gap between
√

log m
m and log m

m in the case of
superadditive valuations. We have not considered the class of supermodular valuation func-
tions, for which no information-theoretic lower bound is known in any of the models. Proving
information-theoretic lower bounds for this class is an open problem.
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