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ABSTRACT
Most current banner advertising is sold through negotiation
thereby incurring large transaction costs and possibly subop-
timal allocations. We propose a new automated system for
selling banner advertising. In this system, each advertiser
specifies a collection of host webpages which are relevant to
his product, a desired total quantity of impressions on these
pages, and a maximum per-impression price. The system se-
lects a subset of advertisers as winners and maps each winner
to a set of impressions on pages within his desired collection.
The distinguishing feature of our system as opposed to cur-
rent combinatorial allocation mechanisms is that, mimicking
the current negotiation system, we guarantee that winners
receive at least as many advertising opportunities as they
requested or else receive ample compensation in the form of
a monetary payment by the host. Such guarantees are essen-
tial in markets like banner advertising where a major goal of
the advertising campaign is developing brand recognition.

As we show, the problem of selecting a feasible subset
of advertisers with maximum total value is inapproximable.
We thus present two greedy heuristics and discuss theoret-
ical techniques to measure their performances. Our first
algorithm iteratively selects advertisers and corresponding
sets of impressions which contribute maximum marginal per-
impression profit to the current solution. We prove a bi-
criteria approximation for this algorithm, showing that it
generates approximately as much value as the optimum al-
gorithm on a slightly harder problem. However, this algo-
rithm might perform poorly on instances in which the value
of the optimum solution is quite large, a clearly undesirable
failure mode. Hence, we present an adaptive greedy algo-
rithm which again iteratively selects advertisers with max-
imum marginal per-impression profit, but additionally re-
assigns impressions at each iteration. For this algorithm,
we prove a structural approximation result, a newly defined
framework for evaluating heuristics [10]. We thereby prove
that this algorithm has a better performance guarantee than
the simple greedy algorithm.
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1. INTRODUCTION
Online advertising is one of the most profitable business

models for Internet services to date, accounting for annual
revenues approaching $17 billion dollars according to the
Internet Advertising Bureau [21]. According to the same
report, 22% of this revenue comes from banner advertising,
or graphic-based advertisements which appear embedded in
content pages on a host website. Current models of ban-
ner advertising require advertisers to negotiate rates directly
with the sales representatives of the host on a monthly ba-
sis. These negotiations involve several parameters. First,
the advertiser specifies a subset of content pages which are
relevant to his or her ad. Next, the advertiser requests a
desired number of impressions, or advertising opportunities,
on pages from among his or her specified subset, and a per-
impression price. Finally, if the negotiation is successful and
the contract is accepted, the advertisement is shown on some
subset of the specified content pages. By accepting a con-
tract the supplier is committed to the supply. If the supply
is not met, the bidder is compensated in two ways: he is
not charged for the parts that are not met, and moreover,
he gets them for free in the next time period.

This process requires a lot of overhead for advertisers who
must negotiate with sales representatives, and a lot of guess-
work for sales representatives who must decide based on in-
tuition which advertising contracts to accept. As a result,
small advertisers tend to be locked out of the system, un-
able to bear the cost of the smallest-sized contracts, and the
system overall suffers additional inefficiencies from the sub-
optimal decisions of the sales representatives. In this paper,



we consider automating this system. We design a system
which each month considers the supply of page views and a
set of bids, each specifying a desired set of pages, a desired
number of impressions, and a per-impression value, and then
selects a subset of bids which maximizes the value while sus-
taining penalties for under-allocated impressions. Whereas
in practice, the penalties are realized in the form of free im-
pressions, in our system we represent these penalties with
a monetary payment from the host to the advertiser equal
to a specified multiple of the per-impression value for each
under-allocated impression. The penalty factor reflects an
estimate of how much next month’s impressions are going
to be worth.

There are several factors which make this system harder
to design than general combinatorial allocation mechanisms.
The most significant difference comes from the fact that the
host must “guarantee” supply by paying a penalty for under-
allocated impressions. Such guarantees are quite character-
istic of the banner advertising market, and are important in
branding campaigns where it is essential for the advertiser
to receive at least some minimum number of impressions –
the McDonald’s arches or the Nike swoosh are recognizable
precisely because they are ubiquitous. However, these guar-
antees also make the underlying optimization problem hard
to approximate: for example, if the penalty is very large,
then each winner must receive all of his requested impres-
sions and so we can reduce our problem from the well-known
set packing problem [15]. In fact, as we show, even for small
penalties, our problem is not approximable within any con-
stant factor.

We therefore focus on designing heuristics with varying
sorts of provable guarantees. A common approach to combat
inapproximability is to develop bi-criteria approximations,
or algorithms that do almost as well as the optimum solution
on a slightly harder problem. For example, in β-balanced
graph partitioning, the goal is to cut the minimum number
of edges to divide a graph on n vertices into two parts, each
with at most βn vertices. The seminal paper of Leighton and
Rao [18] provides a bi-criteria approximation algorithm for
(2/3)-balanced graph partitioning which cuts at most a fac-
tor of O(log n) more edges than the optimum solution on the
harder problem of bisection, or (1/2)-balanced graph parti-
tioning. This was improved to O(

√
log n) by Arora et al. [3].

The bi-criteria framework has also been applied to min sum
clustering [5] and selfish routing [22].

In our case, we apply the bi-criteria framework by de-
signing an algorithm that does approximately as well as the
optimum algorithm with larger penalties. Our algorithm is
extremely simple and trivial to implement: it selects at each
iteration a new winner and a corresponding set of impres-
sions with maximum marginal per-impression profit. We
show that this algorithm gets at least 23% of the optimum
profit on a problem with 2.26 times the penalty (i.e., whereas
our algorithm just pays an advertiser his per-impression bid
for each under-allocated impression, the optimum must pay
2.26 times the per-impression bid).

Despite the bi-criteria guarantee, we note that this greedy
algorithm may perform poorly when the optimum solution
has large value. These are exactly the instances in which
we would like to perform well. Hence, we present a refined
greedy algorithm which involves solving a flow computation
and prove guarantees on its performance in the structural
approximation [10] framework, a newly developed frame-

work for evaluating the approximation factor of heuristic
algorithms. This framework allows one to evaluate the ap-
proximation factor of an algorithm based on the structure of
the optimal (or any) solution, and not only the value of the
optimal solution. In particular, it provides a performance
guarantee that improves as the performance of the optimum
solution improves, and unlike the bi-criteria framework, it
provides these guarantees with respect to the optimum on
the same problem instance.

Our refined greedy algorithm iteratively selects advertis-
ers with maximum marginal per-impression profit, as be-
fore, but additionally considers re-allocating impressions to
already selected advertisers at each step. In evaluating this
algorithm, we consider the fraction of demand that the op-
timum satisfies for each advertiser. We show as this frac-
tion increases, hence increasing the optimum value, our al-
gorithm’s value also increases. For example, if the optimum
always satisfies 75% of the demand of each advertiser, then
our algorithm gets at least 10% of the optimum, wherease
if the optimum satsifies 99% of the demand of each adver-
tiser, then our algorithm gets at least 30% of the value of
the optimum. See Section 5.1 for the exact trade-off curve.

We note that the refined greedy algorithm outperforms
the simple greedy algorithm on many classes of instances.
However, this improved performance comes at the expense of
increased difficulty in the implementation (and an additional
linear factor in the running time).

It is important to note that we ignore incentives through-
out this work, i.e., we analyze the value of our allocation
mechanism in an idealized world where advertisers truth-
fully report their types and not in an economic equilibrium.
While incentive issues are very important in practice, they
tend to have less effect in highly competitive settings. In
successful banner advertising systems, where lots of adver-
tisers compete for limited supply, we intuitively expect in-
centives to play a minimal role. We leave it as further work
to study incentives in our proposed systems and/or calculate
payments to make our proposed systems truthful.

1.1 Related Work
The problem of maximizing welfare is a central problem

in algorithmic mechanism design. This problem, even for
special cases such as single-minded bidders, is known to be
hard even to approximate [23, 17, 16, 7, 8]. However, under
some conditions such as submodularity or subadditivity of
valuations, constant-factor approximation algorithms have
been developed [8, 9]. For several problems with packing
constraints linear programming-based and greedy constant-
factor approximation algorithms have been proposed [1, 13].

In the context of Internet advertising, sponsored search
auctions have been studied extensively. The closest works
to ours in this literature are the 1− 1

e
-competitive algorithms

that have been designed for maximizing revenue for online
allocation of advertisement space [20, 6, 19].

Our work is distinguished from previous work in the lit-
erature by the existence of supply guarantees, implemented
through penalties. These penalties reflect the non-linearity
of bidder valuations, a characteristic of advertisers in banner
advertising markets.

1.2 Organization
This paper is organized as follows. We give a formal def-

inition of the model in Section 2. In this section, we also



give the following basic observation about our problem: in
the guaranteed banner advertisement problem, if the set of
served advertisers is fixed, the optimal allocation can be
found in polynomial time. This indicates that the challeng-
ing part of the problem is to find the set of advertisers that
should be served to maximize the value. In Section 3, we
prove that the problem does not admit a constant-factor
approximation algorithm even for weak supply guarantee
conditions. Next, in Section 4, we give a bi-criteria approx-
imation algorithm for the problem. In Section 5, we give an
adaptive greedy algorithm and analyze it in the structural
approximation framework.

2. MODEL
The banner advertisement problem can be modeled as fol-

lows. We are given a set A of m advertisers {1, . . . , m} and
a set U of advertising opportunities that can be allocated to
them. Each advertising opportunity is an impression of an
advertisement on a webpage. For the rest of the paper, we
refer to each advertising opportunity as an item. Without
loss of generality, we assume all items of U are distinct. The
bid of an advertiser i is a tuple (Ii, di, bi) where Ii ⊆ U spec-
ifies the subset of items in which advertiser i is interested 1,
di specifies the number of items the advertiser requires, and
bi specifies the per-unit price the advertiser is willing to pay
(up to his required number of units). Allocating more than
di items to advertiser i has no marginal benefit.

Following the convention of current banner advertising
systems, we require our system to guarantee the supply of
an advertiser. That is, by accepting the bid of advertiser
i, we enter a contract for the sale of di items from the set
Ii. Should we fail to fulfill this contract, we are required to
pay a penalty. This penalty can be a fixed price paid for ev-
ery under-allocated impressions; or more commonly, can be
filled by delivering the same number of impressions for free
during the following period. Both of these penalty schemes
can be formalized in the following way: If the advertiser re-
quested di units and was allocated only xi units for some
xi < di, then the system collects only

bixi − λbi(di − xi) = ((λ + 1)xi − λdi)bi (1)

in value, where λ is a fixed constant. The special case of
λ = 1 can be interpreted as delivering the same number of
impression for free the following month. Henceforth, we will
be primarily concerned with the case λ = 1, unless otherwise
stated, although all results can be appropriately generalized
to other values of λ.

Now we can formalize the banner advertisement problem
in the following way: Given a set of advertisers A and their
bids, {(Ii, di, bi)}, find a subset of advertisers, or winners, for
which accepting their bids maximizes the value. This prob-
lem is captured by the following mathematical program. Let
yi be the indicator variable that advertiser i is a winner; zij

be the indicator variable that item j is allocated to adver-
tiser i; and xi be the total number of items allocated to
advertiser i.

1Each advertiser is interested in advertising on webpages
with specific content such as finance, sports, etc. Advertis-
ing can be even more targeted by using demographic infor-
mation of the current viewer of the webpage such as gender,
geographic location, or age.

maximize
X

i∈A

yi(2xi − di)bi (2)

subject to ∀j ∈ U :
X

i∈A

zij ≤ 1

∀i ∈ A : xi =
X

j∈Ii

zij

∀i ∈ A : xi ≤ di

∀i ∈ A, ∀j ∈ U : zij ∈ {0, 1}
∀i ∈ A : yi ∈ {0, 1}

As we show in the next section, it is NP-hard to even ap-
proximate the solution of this optimization program within
any constant ratio. The main difficulty comes from the mul-
tiplicative terms yixi in the objective function of the pro-
gram above. However, we show that once the set of winning
advertisers is determined (i.e., once we fix the {yi} vari-
ables), the resulting program can be solved combinatorially
using a maximum weighted matching algorithm.

Lemma 2.1. Given the set T of winning advertisers, the
problem of finding the optimum allocation of items to adver-
tisers in T can be optimally solved in polynomial time.

Proof. We can rewrite the above mathematical program
by setting yi = 1 for i ∈ T and yi = 0 otherwise, and by
setting xi =

P

j∈Ii
zij . The negative term in the resulting

objective function is now a constant, and so the problem
reduces to the following program:

maximize
X

i∈T

X

j∈Ii

2zijbi

subject to ∀j ∈ U :
X

i∈T

zij ≤ 1

∀i ∈ T :
X

j∈Ii

zij ≤ di

∀i ∈ T, ∀j ∈ U : zij ∈ {0, 1}
(3)

This integer program is equivalent to a maximum weighted
b-matching problem, or f -factor problem, in which, given a
weighted graph G, the goal is to find a maximum-weight
subgraph of G in which the degree of each node i is at
most f(i). The mapping is as follows: consider a bipar-
tite graph G(V, E) with node set V (G) = U ∪ T , edge set
E(G) = {(i, j)|i ∈ T, j ∈ Ii}, and edge weights w(i, j) = 2bi.
The solution to the integer program is then the maximum
weighted f -matching in which f(i) = di for i ∈ T and
f(j) = 1 for j ∈ U . We can therefore use the combina-
torial or LP-based algorithms for f -matching (see, e.g., [25,
24, 4]) to solve our problem.

The above discussion shows that the challenging part of
the banner advertising problem is to decide the set T of
winning advertisers.

3. HARDNESS OF APPROXIMATION
In this section, we show that the banner advertising prob-

lem is NP-hard to approximate within any constant ratio.
In other words, for any constant 0 < c ≤ 1, it is not possible



to find an allocation with value at least c times the optimum
value (defined as the value of the mathematical program (2))
in polynomial time unless P = NP .

This result is immediate for arbitrarily large penalties via
a reduction from the inapproximable maximum set-packing
problem [15], i.e., the problem of finding the maximum num-
ber of disjoint sets in a given set family. For arbitrary penal-
ties, we provide a reduction from the k−uniform regular set
cover problem. In this problem, we are given a family of
sets over a universe of elements. Each set in the family has
exactly k elements, and each element in the universe is cov-
ered by exactly k sets. The goal is to select the minimum
number of sets which cover all the elements. It is shown in
Feige et al. [14], Theorem 12, that:

Proposition 3.1. [11, 14] For every choice of constants
s0 > 0 and ε > 0, there exists k dependent on ε and instances
of k−uniform regular set cover with n elements on which
it is NP-hard to distinguish between the case in which all
elements can be covered by t = n

k
disjoint sets, and the case

in which every s ≤ s0t sets cover at most a fraction of 1 −
(1− 1

t
)s + ε of the elements.

By introducing an advertiser with bid (Ii, |Ii|, 1) for each
set Ii in the set cover instance, there is a trivial reduction
from the problem above which shows that it is NP-hard
to compute the optimum value of the banner advertising
problem. In the case in which all elements can be covered
by t = n

k
disjoint sets, the optimum value would be n, but,

the case in which every s ≤ s0t sets cover at most a fraction
of 1− (1− 1

t
)s +ε of the elements, the optimum value would

be less than n.
In order to prove hardness of approximation, we find an

upper bound on the value of the optimum solution in the
second case, which leads to the theorem below.

Theorem 3.2. The banner advertising problem is NP-
hard to approximate within any constant ratio 0 < c ≤ 1.

The theorem is proved by showing that if one can approx-
imate the solution within a constant ratio, then it is possible
to distinguish between the instances of the set cover problem
described above. The complete proof is given in appendix A.
Although the proof in the appendix is presented assuming
the penalty λ is equal to one, the result holds for any con-
stant linear penalty.

4. A GREEDY ALGORITHM
In lieu of the above hardness result, we present a greedy

heuristic which at each step assigns items to an advertiser
that maximizes the profit-per-item. The description of the
algorithm is given in Figure 1. Note that it is important
to choose an advertiser that maximizes profit-per-item. The
example below shows that a naive greedy algorithm which
chooses the advertiser with maximum overall profit performs
quite poorly even in “easy” instances.

Example Suppose there are n + 1 advertisers and n items.
Advertiser i, 1 ≤ i ≤ n, is interested only in item i and
bids 1 for it. Advertiser n + 1 bids 1 + ε for receiving all
the n items. While the optimal solution yields a value of n
by allocation items 1 to n to advertisers 1 to n, the naive
greedy algorithm obtains a value of just 1 + ε.

The value that algorithm greedy obtains from the in-
stance in the previous example is equal to the optimum
value.

4.1 Performance Guarantee: Bi-Criteria
Approximation

We analyze algorithm greedy by developing bi-criteria
approximations for our problem. To do so, we compare
the value of our solution to the value of the optimal so-
lution with a greater penalty. We say an algorithm is an
(α, β)-approximation if it always outputs a solution with
value at least β times that of the optimal solution with
(larger) penalties α. More formally, an algorithm is an
(α, β)-approximation for the problem of selling banner ads
if it can always obtains a β fraction of the value of the lin-
ear program below – this is the same as LP 2 but with a
different objective.

maximize
X

i∈A

yi((α + 1)xi − αbidi)bi (4)

subject to ∀j ∈ U :
X

i∈A

zij ≤ 1

∀i ∈ A : xi =
X

j∈Ii

zij

∀i ∈ A : xi ≤ di

∀i ∈ A, ∀j ∈ U : zij ∈ {0, 1}
∀i ∈ A : yi ∈ {0, 1}

In other words, while our algorithm pays a penalty of 1 for
under-allocation, the optimal solution is charged a penalty
of α for some α > 1.

For algorithm greedy we can prove the following theo-
rem:

Theorem 4.1. For α ≥ ln 2
1−ln 2

≈ 2.26, the approximation

ratio of greedy algorithm is 1−ln 2
2−ln 2

≈ 0.23. For 1 < α <
ln 2

1−ln 2
, the approximation ratio is

2x− 1− ln 2x

(α + 3)x− α− 1− ln 2x
(5)

where x ∈ [ α
α+1

, 1] is the root of the equation 1/x + (1 +

1/α) ln 2x = 2.

Proof. For any α > 1, let optα be an optimal solution
for the penalty α. We provide lower bounds on the approx-
imation ratio of greedy and optα. Let A be the set of all
advertisers who contribute a positive profit to optα. For
i ∈ A, let Si be the set optα allocated to advertiser i. To

simplify notation, we use si to denote |Si|
di

. Without loss of

generality, we may assume α
α+1

< si ≤ 1.
In the analysis of greedy algorithm, we will partition

each item into two subitems: the P subitem that takes up
a p fraction of the item, and the Q subitem that takes up
a (1 − p) fraction of the item; we will determine the value
of p later. We will develop lower bounds on the profit of
greedy by a case analysis. In each case, we will compare the
profit optα gets to one of two kinds of profit that greedy

gets: only to the part computed over P subitems, or only
to the part computed over Q subitems. Summing over all



greedy Algorithm:

Initialize the set of allocated items Q to be the empty set
While there exists an unassigned advertiser:

1. For each unassigned advertiser i:

(a) Let J ′
i = Ii \ Q be the set of remaining items that we can allocate to i and Ji ⊆ J ′

i be an
arbitrary subset of size min(di, |J ′

i |).
(b) Let pi = (2− di/|Ji|)bi be the profit-per-item obtained by allocating Ji to i.

2. Choose the advertiser i∗ whose per-item profit pi∗ is maximum.

3. If pi∗ is positive, then set i∗ to be a winner, allocate Ji∗ to i∗, and set Q to be Q ∪ Ji∗ ;
otherwise terminate the algorithm.

Figure 1: greedy algorithm

advertisers, the P part and Q part of each item, and hence
the whole item, is counted at most once.

For i ∈ A, there are two cases:

1. greedy allocates strictly less than |Si| − ⌈di/2⌉ items
from Si. In this case we consider the profit greedy

obtains from P subitems assigned to i.

When j elements of Si are remaining, greedy could al-
locate these elements to i with profit-per-item 2j−di

j
bi.

This profit is positive for ⌈di/2⌉ < j ≤ |Si|. Therefore,
in this case, greedy must have allocated a nonempty
set to advertiser i since otherwise greedy could get
positive per-item profit by adding i to the solution
and allocating the unallocated items of Si to i. Fur-
thermore, as greedy has items of Si available when
assigning items to i, it follows that the demand di of
advertiser i is fully satisfied. Hence greedy gets com-
plete profit for P subitems, giving a profit of pdibi.

2. greedy allocates at least |Si| − ⌈di/2⌉ items from Si

In this case we consider the profit greedy gets from
Q subitems of Si.

Note, greedy must have obtained a profit of at least
2j−di

j
bi from the (|Si| − j + 1)’th item allocated from

Si as this is the per-item profit greedy obtains by
allocating the remainder of Si to i. Summing over j,
⌊di/2⌋ + 1 ≤ j ≤ |Si|, greedy must have allocated
these items with total profit at least:

|Si|
X

j=⌊di/2⌋+1

2j − di

j
bi ≥

Z |Si|

di/2

2x− di

x
bidx (6)

=

Z |Si|

di/2

(2− di

x
)bidx

= (2|Si| − di − di(ln |Si| − ln
di

2
))bi

= (2si − 1− ln 2si)dibi

Taking into account that this profit comes only from
the Q part of items, this gives a profit of (1− p)(2si−
1− ln 2si)dibi.

For each advertiser i, exactly one of the above cases hap-
pens. Furthermore, for each item, the P part is counted at

most once since the assignment in case 1 is a subset of the
solution for greedy and hence disjoint. Similarly, the Q
part is also counted at most once since the Si considered in
case 2 is a subset of the optimum solution and hence dis-
joint. Therefore, we have shown that greedy gets a profit
of at least:

X

i∈A

min{p, (1− p)(2si − 1− ln 2si)}dibi. (7)

The profit of optα from Si is ((α + 1)si − α)dibi. There-
fore, the ratio of the profit of greedy to optα is at least
min{p, (1− p)γ}, where γ is defined as

γ = min
i
{2si − 1− ln 2si

(α + 1)si − α
} (8)

Choosing p = γ
1+γ

gives the approximation ratio γ
1+γ

.
We find a lower bound on γ using the first and second

order conditions. The details of calculations are given in
appendix B. For α ≥ ln 2

1−ln 2
, γ takes its minimum for si = 1.

Plugging in (8), we get γ = 2−1−ln 2
(α+1)si−α

= 1 − ln 2 and p =
1−ln 2
2−ln 2

For 1 < α < ln 2
1−ln 2

, as we prove in appendix B, there exists

a point x in [ α
α+1

, 1] for which si = x gives the minimum
value of γ. This point is the root of the equation below
which is derived by taking the derivatives of (8):

α/x− 2α + (α + 1) ln 2x = 0.

Plugging this value for γ into γ
1+γ

, we get (5) as a lower

bound on the approximation ratio for 1 < α < ln 2
1−ln 2

.

We give an example which shows the analysis is tight
for α ≥ ln 2

1−ln 2
. In this example, the optimal solution al-

locates all of the items to the advertisers without paying
any penalty. However, the greedy algorithm obtains just a
1−ln 2
2−ln 2

fraction of the optimal solution.

Example Assume for an even number k, there are m =
3k/2 advertisers and km items. Suppose these items are
represented by an m × k matrix C. Each advertiser has a
demand of k items. Advertiser i, 1 ≤ i ≤ k, is only interested
in items in row i, i.e. {cij |1 ≤ j ≤ k}, and bids 1 for each of
these items. Advertiser i, k+1 ≤ i ≤ 3k/2, bids 2− k

i+1−(k/2)
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Figure 2: The bi-criteria approximation ratio of

greedy for 1 < α < ln 2
1−ln 2

for each item in row i. He also bids 2 − k
i+1−(k/2)

for each

item in column i− k/2.
By induction, one can show that at step j, for 1 ≤ j ≤ k/2,

greedy may allocate the top k items in column k−j +1, to
advertiser 3k/2−j+1. Therefore, the total profit of greedy

is:

k

3k/2
X

i=k+1

2− k

i + 1− (k/2)
= 2k

k/2
X

i=1

1− 1

1 + (2i + 1)/k

We can make k arbitrary large. Hence, profit of greedy

can be approximated by k2(1 − ln 2), with arbitrary high
accuracy:

k

3k/2
X

i=k+1

2− k

i + 1− (k/2)
≈ k2(1−

Z 1

x=0

1

1 + x
dx)

= k2(1− ln 2)

The optimal solution gives advertiser i, 1 ≤ i ≤ m, all the
items in row i. Hence, it gets a profit k2 from the first k
advertiser and a profit k2(1− ln 2) from the rest. Therefore,
the approximation ratio of greedy is bounded by 1−ln 2

2−ln 2
.

5. AN ADAPTIVE GREEDY ALGORITHM
As suggested by Example 4.1, fixing the items allocated

to each advertiser may hurt the performance of the algo-
rithm. In this section, we give an adaptive greedy algorithm
called adaptive greedy. Similar to the previous greedy
algorithm, this algorithm iteratively selects new winners.
However, in each iteration, it fixes only the number of items
assigned to the new winner and not the precise set of items.
This flexibility allows adaptive greedy to find the opti-
mum solution in Example 4.1 and, as we will show, allows
us to prove better approximation guarantees in general.

We use the following notation throughout this section.
For a winning advertiser i, let ci be the number of items
allocated to i. Note as mentioned above that ci remains fixed
although the set of allocated items may change throughout
the course of the algorithm. Let Gt be the set of advertisers
chosen by the algorithm up to but not including time t. For
j /∈ Gt, let fjt be the maximum number of items that we
could allocate to advertiser j, subject to the constraint that
each advertiser i ∈ Gt gets exactly ci items. More formally,
fjt is the solution of the following integer program.

maximize
X

k∈Ij

xjk (9)

subject to
X

k∈Ij

xjk ≤ dj

∀i ∈ Gt :
X

k∈Ii

xik = ci

∀k ∈ U :
X

i∈A

xik ≤ 1

∀i ∈ A, ∀k ∈ U : xik ∈ {0, 1}

Also, let rjt =
2fjt−dj

fjt
·bj be the maximum per-item profit

that we could obtain from advertiser j, subject to the con-
straints. At step t, algorithm adaptive greedy chooses
the advertiser with maximum rjt, j /∈ Gt. The algorithm is
given in Figure 5.

To compute fjt, one can solve the linear relaxation of the
above program and round the solution to an integer solution
(without decreasing the objective function). For a complete
description of the algorithm, we refer the reader to [4]. 2

5.1 Performance Guarantee: Structural
Approximation

As we observed in Section 3, the hardness result implies
that we do not hope to analyze the adaptive greedy algo-
rithm by the traditional multiplicative approximation frame-
work. However, in order to distinguish the quality of differ-
ent algorithms in practice, we can use other approximation
measures such as the bi-criteria approximation.

In this section, we analyze the adaptive greedy algo-
rithm using a newly defined framework for evaluating heuris-
tics called structural approximation [10]. The main feature
of this framework is that it is designed to evaluate the ap-
proximation ratio of an algorithm based on the structure of
an optimal (or any) solution, and not only the value of an
optimal solution. In this framework, given a solution with
some value, we define the recoverable value of the solution
based on its structure. The goal is to show that the value
of our algorithm is at least as much as the the recoverable
value of any solution. 3 We would like to design a recover-
able value function that is very close to the real value. Note
that in the traditional multiplicative approximation frame-
work, the recoverable value is restricted to a multiplicative
ratio of the value of the solution. By allowing more general
functions for the recoverable value, the structural approxi-
mation framework is more flexible, and therefore can distin-
guish among different algorithms with the same worst-case
multiplicative approximation guarantees. Additionally, this
framework provides a way for comparing the quality of our
solution to that of the optimal solution of the same problem
(with the same parameters). This is in contrast to the bi-
criteria approximation framework in which we compare the
value of our solution to the value of a problem with different
parameters. We refer the reader to [10] for a more detailed

2One can also solve the problem by modeling it as a flow
problem with lower bound and upper bound on the capaci-
ties.
3Note that the recoverable value of different optimal solu-
tions may differ. In fact, the solution with the optimum
recoverable value may not be an optimal solution to the
original problem at all. Our guarantees hold with respect to
the largest recoverable value of any solution.



adaptive greedy Algorithm:

Initialize G, the set of chosen advertisers, to be the empty set.
Let t, the number of steps, be zero.

While there exists an unassigned advertiser:

1. t← t + 1

2. For each advertiser j /∈ G:

(a) Let fjt be the maximum number of elements that can be allocated to advertiser j,
subject to the constraints that each advertiser i ∈ G gets exactly ci items.

(b) Let rjt be the maximum profit-per-item that could be obtained by choosing advertiser j,
subject to the constraints, i.e. rjt = (2− dj/fjt)bj .

3. Choose an advertiser j with maximum rjt.

4. If rjt is positive:

(a) Add advertiser j to G.

(b) Let cj = fjt.

Otherwise terminate the algorithm.

Figure 3: adaptive greedy algorithm

discussion of the structural approximation framework.
We now analyze adaptive greedy algorithm using the

structural approximation framework. Let W be the set of
advertisers that are allocated a non-empty set in the optimal
solution, i.e., the winners. For each advertiser i ∈ W, let Si

be the set of items allocated to i in an optimal solution. For

i 6∈ W, Si is taken to be the empty set. Let si = |Si|
di

. Then

the value of the optimal solution is:
P

i∈W(2si− 1)dibi. We
define

X

i∈W

(2si − 1− ln 2si)dibi

as the recoverable value of this solution. Note that any op-
timal solution makes profit only from the advertisers with
si > 1

2
. We show that the value of adaptive greedy is

at least equal to this recoverable value. This gives a perfor-
mance guarantee based on the the structure of the optimal
solution. In particular, the performance of the algorithm is
better if si’s are closer to 1. This statement is formalized in
the following theorem.

Theorem 5.1. Let Si be the set of items assigned to ad-

vertiser i by an optimal solution. Also, let si = |Si|
di

. adap-

tive greedy algorithm obtains a value of at least:
X

i∈W,si> 1

2

(2si − 1− ln 2si)dibi.

Corollary 5.1. Consider a collection {(qi, αi)} corre-
sponding to an optimal solution, where qi is the fraction of
the value of the solution comes from the advertisers for which
an αi fraction of the demand is satisfied. Then, the approx-
imation ratio of adaptive greedy is at least:

P

i qi(2αi − 1− ln 2αi)
P

i qi(2αi − 1)

In particular, when in the optimal solution, at least an s
fraction of the demand of all winning advertisers is satisfied,
adaptive greedy obtains at least a fraction (2s−1− ln 2s)
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Figure 4: The approximation ratio of adaptive

greedy when at least a s fraction of the demand

of all winner advertisers is satisfied in the optimum

solution.

of the value of the optimal solution. Figure 4 depicts this
lower bound on the value for 1

2
≤ s ≤ 1.

Proof. To prove Theorem 5.1, without loss of generality,
we assume the algorithm chooses advertisers 1, 2, . . . , T in
order. We inductively construct a sequence of assignments
of items to advertisers which we call canonical assignments.
Let C0 be the empty set. The t-th element of the sequence
of assignments, denoted by Ct, is an assignment of items to
advertisers 1, . . . , t which satisfies the following properties.

• Each advertiser i, 1 ≤ i ≤ t, is assigned exactly ci

items.

• All items that are assigned in Ct−1 are also assigned in
Ct, i.e. are assigned to advertisers 1, . . . , t.

• For each advertiser i, 1 ≤ i ≤ t, all the items in Si

(namely, the items allocated to i by the optimal solu-
tion, if i ∈ W) are assigned. (This property trivially
holds for i 6∈ W.)



In the following lemma, we show that such a sequence of
assignments exists.

Lemma 5.1. There exists a sequence {C1, C2, . . . , Ct} of
canonical assignments which satisfies the properties above.

Proof. We prove the lemma by induction on t. For t = 1,
the only nontrivial property is the third one, if 1 ∈ W. In
this case we observe that c1 ≥ |S1|, and hence a canonical
assignment exists. Therefore, the base of induction holds.

Now consider t > 1. Assume a sequence of canonical as-
signments C1, . . . , Ct−1, and let Ct be an optimal solution for
LP (9). We change Ct to a canonical assignment satisfying
the above three properties. For 1 ≤ i < t, let Bi be the set
of item that are assigned to advertiser i in Ct−1. Also, let Bt

the set of items in St that are not assigned to any advertiser
in Ct−1. Note that |Bt| ≤ ct, because if we assign each item
in Bi, 1 ≤ i ≤ t, to advertiser i, it gives us a feasible solution
of LP (9).

We repeat the following procedure as long as there exists
an item x such that x ∈ Bi, for an advertiser 1 ≤ i ≤ t, and
x is not assigned to any advertisers in Ct. Since advertiser
i has received ci items in Ct, and |Bi| ≤ ci, there exists an
item y /∈ Bi that is assigned to i in Ct. We update Ct by
assigning x to i and removing y from the set of items allo-
cated to i. Note that each time we perform the procedure,
the number of items that is allocated to each advertiser re-
mains the same. However, the number of items that are
allocated to the same advertisers in Ct and the assignment
defined by Bi’s increases by 1. Since the number of items
that are allocated to the same advertiser in Ct and the as-
signment defined by Bi’s is at most

P

1≤i≤t ci, after some
number of steps, we reach a point where no such update is
possible. Therefore, the final assignment after these set of
updates satisfies all the three properties.

Now we are ready to prove Theorem 5.1. Note that the
value obtained from each assignment only depends on the
number of items allocated to each advertiser. Therefore,
without loss of generality, we might assume that adaptive

greedy allocates to each advertiser the same set of items
assigned to this advertiser in canonical assignment CT .

For i ∈ W, let kit be the number of items of Si that
are not assigned in Ct−1. Since we can construct a feasible
solution with value kit for LP (9) using Ct−1, we observe
that fit ≥ kit. Therefore, the value-per-item that adaptive

greedy would obtain at this point if it chooses advertiser i
and assigns to it all not previously assigned items of Si at
least (2− di

kit
)bi. Thus, the value adaptive greedy obtains

by the end of the algorithm is at least:

m
X

i=1

|Si|
X

j=kiT

(2− di

j
)bi

For i ∈ W, if advertiser i is chosen by adaptive greedy

then kiT = 0, and if advertiser i is not chosen by adaptive

greedy then necessarily kiT ≤ di

2
. Therefore:

m
X

i=1

|Si|
X

j=kiT

(2− di

j
)bi ≥

m
X

i=1

|Si|
X

j=⌊di/2⌋+1

(2− di

j
)bi

By the same calculation as in Theorem 4.1, equation (6),

the value obtained by adaptive greedy is at least:
X

i∈W,si> 1

2

(2si − 1− ln 2si)dibi

Note that while we stated all our results with respect to
the recoverable value of an optimal solution, our proofs in
fact follow when considering the recoverable value of any
solution.

5.2 Comparison of GREEDY and ADAPTIVE
GREEDY

We analyzed adaptive greedy algorithm using the struc-
tural approximation framework. We also analyzed the greedy

algorithm using the bi-criteria approximation framework. In
order the compare these two greedy algorithms, we now an-
alyze the greedy algorithm in the structural approximation
framework.

Let W be the set of the winners in an optimum solution
(or any feasible solution). Assume that this solution satisfies
a si fraction of the demand of advertiser i ∈ W. Note that
si ≥ 1

2
, i ∈ W. By equation (7), in the proof of Theorem 4.1,

for any p, 0 ≤ p ≤ 1, greedy obtains a value of at least:

X

i∈W,si> 1

2

min{p, (1− p)(2si − 1− ln 2si)}dibi (10)

Given si’s, one can compute the value of p which maxi-
mizes the sum and gives a recoverable value for each solution.
However, by Theorem 5.1, the value of adaptive greedy

algorithm from the same instance is at least:
X

i∈W,si> 1

2

(2si − 1− ln 2si)dibi

This immediately shows that adaptive greedy gives us
a better guarantee on the value of the solution.

When in an optimum solution, fraction s of the demand of
all advertisers is satisfied, we can easily compare the guaran-
tees on the value given in Theorems 4.1 and 5.1. In this case,
the optimum value for p in (10) is equal to 2s−1−ln 2s

2s−ln 2s
, which

leads to the same guarantee on the approximation ratio of
greedy algorithm. The guarantee on the approximation
ratio of adaptive greedy algorithm is 2s− 1− ln 2s. Fig-
ure 5 depicts these guarantees on the approximation ratio
for 1

2
≤ s ≤ 1.

One way to see that adaptive greedy strictly outper-
forms greedy is to observe that adaptive greedy algo-
rithm obtains the optimum value of the instance described
in Example 4.1. As a result, the ratio between the values of
the solutions obtained by these two algorithms is 2− ln 2.

6. CONCLUSION
In this paper we showed that having supply guarantees

makes the problem of maximizing the value of selling ban-
ner advertisements inapproximable. In the lieu of this hard-
ness result, we proposed two greedy heuristics for the ban-
ner advertising problem and analyzed them rigorously in the
bi-criteria and structural approximation frameworks. Given
the simple and flexible nature of these algorithms, we expect
that these algorithms can help in automating the negotiation
process for banner advertising.

In order to make our algorithms even more applicable
to practical settings, we would like to consider the online
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Figure 5: Comparison of the lower bounds on the

competitive ratio of the two greedy algorithms when

at least s fraction of the demand of all winners is

satisfied by an optimal solution.

or stochastic settings, in which advertisers arrive over time
and submit bids which must be immediately accepted or
rejected, without knowledge of exact future demand. Also
along these lines, it would also be useful to relax the as-
sumption that the supply of items is known a priori. In
practice, hosts have good estimates of the number of page
views. However, these estimates may have large variance,
and we should ideally provide algorithms which are robust
with respect to errors in the supply estimates. Finally, to
completely automate the banner advertising process and re-
place it with a repeated auction mechanism, it is necessary
to design a pricing mechanism to accompany our allocation
mechanism and analyze the resulting incentives.
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APPENDIX

A. PROOF OF THEOREM 3.2

Proof. We prove that claim holds even if the advertis-
ers have large demands. We define a special case of selling
banner advertisements . Consider m sets A1, · · · , Am, each
of size k; let A = ∪m

i=1Ai and n = |A|. Also consider a set
Q of size q which is disjoint from A. Also, assume k = O(q)
and kq = o(

√
n).

Problem B(k, q, n) is defined with m advertisers. Let c =
2(1 −

p

q
n

+ ε). Let the bid of advertiser i, (Ii, di, bi), be
equal to (Q ∪ Ai, ck, 1). We show that it is NP-Hard to
approximate B(k, q, n) within a ratio of 2

p

q
n

+ ε.
Consider the k−uniform regular set cover instances de-

fined in the proposition 3.1, for ε and s0 = 3. We say an
instance is of type YES if all elements can be covered by
t disjoint sets. An instance is of type NO if every s ≤ s0t
sets cover at most a fraction of 1 − (1 − 1

t
)s + ε of the ele-

ments. We show if an algorithm can approximate problem
B(k, q, n) within a ratio of 2

p

q
n

+ ε, then this algorithm can
distinguishes between YES and NO instances.

For the YES instances, there are t = n
k

disjoint set which
cover all the n elements. Hence, the value in this case is at
least t(k − (kc− k)) = n(2− c).

For a NO instance, any s sets, 0 ≤ s ≤ s0t, cover at most
q+(1−(1− 1

t
)s+ε)n elements. Therefore, the value of any s

sets is at most 2(q+(1−(1− 1
t
)s+ε)n)−csk. Note that t can

be made arbitrary large ([14]); hence, we can approximate

(1 − 1
t
) with e

−1

t with arbitrary accuracy. Thus, the value
of any s sets is at most:

2(q + (1− e
−s
t + ε)n)− csk

We find the optimum value for s by the first order condi-
tions:

2
1

t
e

−s
t n− ck = 0⇒ s = −t log

c

2
≤ s0t (11)

Plugging s = −t log c
2

in (11), the maximum value is at
most 2(q+(1− c

2
+ε)n)+cn log c

2
. Note that the value for any

choice of m ≥ s0t sets is negative, because the total demand
is more than double of the number of elements. Therefore,
the ratio between the value from a NO instance and a Yes
instance is at most:

2(q + (1− c
2

+ ε)n) + cn log c
2

n(2− c)
=

q
n

+ ε + 1− c
2

+ c
2

log c
2

1− c
2

<
q
n

+ ε + 1− c
2

+ c
2
( c
2
− 1)

1− c
2

= 2

r

q

n
+ ε

Recall that 1− c
2

=
p

q
n

+ ε, which completes the proof.

B. FINDING A LOWER BOUND ON γ

Here, we compute a lower bound on the value of γ defined
in (8). Taking the derivative of 2si−1−ln 2si

(α+1)si−α
with respect to

si:

(2− 1/si)((α + 1)si − α)− (2si − 1− ln 2si)(α + 1)

((α + 1)si − α)2

=
α/si − 2α + (α + 1) ln 2si

((α + 1)si − α)2
(12)

Define fα(x) = α/x − 2α + (α + 1) ln 2x, x ∈ (0, 1]. The
first and the second derivative of fα with respect to x are:

d fα

d x
=− α

x2
+

α + 1

x
d fα

d2 x
=

2α

x3
− α + 1

x2

Hence, for α > 1 and x ∈ (0, 1], function fα is strictly
convex and takes its minimum at x = α

α+1
. Therefore, fα is

increasing in [ α
α+1

, 1].

If fα(1) = ln 2 − (1 − ln 2)α ≤ 0, then fα is negative in
[ α
α+1

, 1]. Hence, (12) is decreasing in [ α
α+1

, 1], and take its

minimum at 1. For α ≥ ln 2
1−ln 2

, fα(1) ≤ 0. Plugging in (8),

γ = 2−1−ln 2
(α+1)si−α

= 1− ln 2. Therefore, for this range of α, the

approximation ratio is 1−ln 2
2−ln 2

.

For 1 < α < ln 2
1−ln 2

, as we prove later, fα( α
α+1

) is negative.

Because fα(1) is positive, by the intermediate value theorem,
there exists a point x∗ in [ α

α+1
, 1] for which fα is zero. This

point is the root of equation:

fα(x) = α/x− 2α + (α + 1) ln 2x = 0.

Because fα is increasing in [ α
α+1

, 1], by convexity, x∗ gives

the minimum value of (12). Plugging this value for γ into
γ

1+γ
, we get (5) as a lower bound on the approximation ratio

of 1 < α < ln 2
1−ln 2

.

Now we only need to show that for α > 1, fα( α
α+1

) is

negative. For x = 1
2
, fα( 1

2
) = 2α−2α+(α+1) ln 1 = 0. Also,

fα is strictly convex and takes its minimum at α
α+1

> 1
2
.

Therefore, fα( α
α+1

) < 0.


