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Abstract— Wireless LAN administrators often have to meeting rooms, or geographic constraints of other ser-
deal with the problem of sporadic client congestion in vices (e.g., airport gate area with arriving and departing
popular locations within the network. Existing approaches flights). A consequence of such behavior is sporadic

that relieve congestion by balancing the traffic load are : . . o
encumbered by the modifications that are required to both client congestion at popular locations within the network.

access points and clients. We proposgell Breathing a well At any one time, a large percentage of mobile clients
known concept in cellular telephony, as a load balancing communicate with a small subset of the APs. These client

mechanism to handle client congestion in a wireless LAN. concentrations create an unbalanced load in the network
We develop power management algorithms for controlling and complicate capacity planning, making it difficult

the coverage of access points to handle dynamic change . .
in client workloads. We further incorporate hand-off costs Sto accommodate heavy, concentrated load in different

and manufacturer specified power level constraints into our Parts of the network without significant, and costly, over-
algorithms. Our approach does not require modification to engineering.
clients or to the standard. It only changes the transmis-  The mapping between clients and the APs that service
sion power of beacon packets, and doesot change the hep is a critical determinant of system performance
transmission power of data packets to avoid the effects .
of auto-rating. We analyze the worst-case bounds of the and resource usage. An AP can get S,e”OUSIy Overload_ed
algorithms, and show they are either optimal or close to €ven when several nearby APs are lightly loaded. This
optimal. In addition, we evaluate our algorithms empirically  is because a majority of the WiFi cards associate with
using synthetic and real wireless LAN traces. Our results the APs with the loudest beacons (i.e. the strength of the
show that cell breathing significantly out-performs the raceived beacon signal is highest among all neighboring
commonly used fixed power scheme, and performs at par APs). We call this as the basic association scheme
with sophisticated load balancing schemes that require ) e ) ; N
changes to both the client and access points. One way to address this issue is to modify the client
association algorithm to incorporate the APs’ load in
addition to the received signal strength indicator (RSSI)
of the APs’ beacon. A client associates with the AP
that is lightly loaded and whose beacons have a highest
|. INTRODUCTION RSSI value. This technique and its different variants have
been proposed by researchers (e.g., [30], [17], [22], [5],
The proliferation of lightweight hand-held deviceq8]), and adopted by vendors of wireless LAN prod-
with built in high-speed WiFi network cards and the sigucts [28], [11], [1]. The problem is that this technique
nificant benefit of any-where any-time Internet access hesjuires support from both APs and clients. APs have
spurred the deployment of wireless “hot-spot” networky communicate their current load to the client, and the
[2], [3]. It is easy to find wireless local area networkglient AP selection algorithm has to incorporate APs
(WLANS) in classrooms, offices, airports, hotels, antbad information. In practice, clients in public areas are
malls. A key challenge for organizations that deplogenerally heterogeneous, i.e. they use wireless cards from
WLANS is capacity management, making the best uskfferent vendors or wireless cards that are running older
of the available resources to derive the best return Slegacy” software. Consequently, such schemes provide
investment while satisfying client service demands. limited benefit.
Previous studies of public-area wireless networks haveTo achieve efficient resource usage without requiring
shown that client service demands are highly dynamahanges to client software, we propose the useaif
in terms of both time of day and location, and thabreathingtechnique. Cell breathing is a well known con-
client load is often distributed unevenly among wirelessept in cellular telephony (2G, 3G, CDMA, CDMA200
access points (APs) [6], [7], [36], [39]. Clients tend tand WCDMA systems) [14], [31]. It is defined as the
localize themselves in particular areas of the network feaonstant change in the geographical area covered by the
various reasons, such as availability of favorable netwodell tower. When the cell becomes heavily loaded, it
connectivity, proximity to power outlets, classroomsshrinks, and the lightly loaded neighboring cells expand.

Index Terms— Wireless LAN, power control, cell breath-
ing, algorithms.



In this way, client traffic from the overloaded cell isdetermines the demand for a commodity, here we can
redirected to neighboring cells, and consequently, tlehange the demands assigned to an AP by adjusting
overall system is load balanced. its power. The challenge is to adjust the powers of all
In WLANS, cell breathing can be implemented byneighboring APs at the same time in such a way that
controlling the transmission power of an AP’s beacotheir loads remain balanced.
packets Note that we donot change the transmission Interestingly, when client demands are homogeneous
power of data packets to avoid degrading clients’ peti.e., all clients have the same demand), we can always
formance. More specifically, when SNR of data packetompute such a power assignment - we can set the
reduces, the AP may see higher data packet lossespowers of all APs in such a way that after all the clients
even adapt to a lower sending rate, both of which degradkoose their AP based on RSSI, either all the clients can
the client’'s performance. In comparison, changing tHae served by the APs or all the APs are fully utilized. For
transmission power of beacon packets only affect hoaeterogeneous demands (i.e., clients can have different
clients associate with APs, and does not affect the lodemands), we apply the same approach, and prove that
rate or sending rate of data packets, which matches agucan completely satisfy at least — K clients, where
goal well. N is the number of clients, anf" is the number of APs
Our proposed power control does not require arfNote thatk is often much smaller tha®V in practical
change to client software or to the standard. Cliengsenarios).
continue to associate with an AP with the strongest We further develop a primal-dual combinatorial algo-
beacon. APs manage their load by adjusting the beacdihm based on the matching theory, which is applicable
packets’ transmission power. In this way, the AP’s cowo a more general setting. In this case, we only assume
erage area is shrunk or expanded transparently, adaptihgt received power is proportional to the transmission
to client demands and balancing the traffic load acropswer, but do not assume any relationship between the
the network. Because this approach does not requireeived power and the distance. (In fact, our algorithm
modifications to clients, its deployment cost and timgdoes not even require the knowledge of the distance
is small. Moreover cell breathing is effective for botthetween APs and clients.) The algorithm is described in
legacy clients that employ the basic association scheitie Appendix. It is based on the insight that our problem
and the new clients that employ load-aware associatibas similarity to market equilibrium problem[13], [21],
scheme. So in practice its benefits can be fully realiz¢#i8]. Based on the same insight, we can apply the ideas
immediately. of the auction-based distributed algorithms for computing
Finding the appropriate power assignment at APs toarket equilibria [18], and develop a distributed algo-
automatically achieve load balancing is a challenginigthm for our problem.
problem. To our knowledge, the cell breathing algorithms For discrete-power assignment, we develop a greedy
proposed for cellular networks are based on local heur@lgorithm. The high level idea of our algorithm is as
tics, and do not provide performance guarantees [14Pllows. We start by setting the powers of all APs to
[31]. the highest value, and then we choose the best power
In this paper, we develop power control algorithm§onfiguration resulting from iteratively decreasing the
for the following two cases: (i) APs are able to adjuspower of overloaded APs. This approach is intuitive and
their power to any leveldontinuous-power assignmgnt €asy to implement. Moreovet,only requires knowledge
and (i) APs are able to adjust their power to only somef APs’ load which is easy to obtain. We show that if
discrete power levels.¢., discrete-power assignmgnt there exists a power assignment such that each AP has
To develop an algorithm for continuous-power assigrfaPacity to accommodate the demands assigned to it, our
ment, we use a duality-based approach. The duality #gorithm can find the solution in a polynomial time.
linear and convex programs has proved effective for In addition, we consider two extensions to the above
algorithm designs [41]. It has been also used in analyg#gorithms: (1) dynamic adjustment of APs’ power in
and design of congestion control mechanisms in tigsponse to changes in clients’ load while limiting the
Internet [24], [26], [27]. Our duality-based approactumber of hand-offs, and (2) minimizing APs’ transmis-
uses linear programming to formulate the problems, agPn power to reduce interference.
use linear programming duality and the complementary TO sum up, the key contributions of our research are
slackness conditions to derive algorithms and prove théi$ follow:
correctness. o We describe four algorithms for continuous-power
More specifically, in many situations, one can see assignment. The first three algorithms assume that
dual variables as shadow prices. In our context, the APs can estimate the received power at the clients.
shadow prices correspond to the AP power. In other Among the three algorithms, we prove the first
words, similar to a market mechanism in which the price  two are optimal (i.e., maximizes the total satisfied



client demand) for homogeneous demands, and tidormation to associate with the least loaded AP [22],
third is close to optimal for heterogeneous demandd.7]. Balachandraret al. suggest clients associate with
Our fourth algorithm, described in the Appendixthe AP that can accommodate its minimum bandwidth
is designed for a more general case, where thequirement. When multiple such APs are available, the
only assumption about received power is that it i8P with highest RSSI is chosen. Bejeragioal. develop
proportional to the transmission power. network-wide max-min fair bandwidth allocation algo-

o We describe a greedy algorithm for discrete poweithms. In their scheme, each client deploys an appropri-
assignment, and prove its optimality under a certaite client software to monitor the wireless channel quality
condition. The algorithm only requires APs’ load ast experiences from all its nearby APs. The client then
input. reports the information to a network control center, which

« We extend the algorithms to handle dynamicallgetermines client and AP association. Their algorithms
changing client demands while limiting the numbeare the first that provide worst-case guarantees on the
of hand-offs. We also consider minimizing APs'quality of the bandwidth allocation.

power to reduce interference.. _ All the above work assume that clients deploy the
+ We evaluate the algorithms using both synthetic anghpropriate module for AP selection. This requirement is
real WLAN traces. hard to realize in practice, since wireless cards at clients

Our results show the algorithms are effective foare heterogeneous, and may not support such coopera-
improving throughput. Under high load, the improvementon. Moreover, the required modules for AP selection
is up to 50% for uniform client distributions, and upmay differ from one network to another network (e.g.,
to an order of magnitude for nonuniform distribution osome networks may require clients to report the informa-
clients’ locations. tion to a centralized server for determining association,

The remaining paper is organized as follow. In Seavhile other networks require clients to make selection
tion I, we review related work. We formulate the poweby themselves). The different requirements posed by
control problem in wireless LAN in Section Ill. In different wireless networks make the deployment even
Section IV, we present algorithms for continuous powerarder.
assignments, and analyze their worst-case bounds fols stated in the previous section, we propose an AP-
both homogeneous and heterogeneous client demangitric approach. When an AP becomes heavily loaded,
We describe a discrete power assignment algorithii shrinks its coverage by reducing the transmission
in Section V. In Section VI, we develop a dynamigower of its beacon packets. This forces redirection of
power control algorithm that adapts to changes in cliegbme traffic to a neighboring cell that is lightly load,
demands while limiting the number of hand-offs. Inhereby achieving load balancing. Different from the
Section VII, we consider minimizing APs’ power. Weprevious cell-breathing work in cellular network, which
describe our evaluation methodology in Section VIII, andse heuristics and does not give worst-case performance
present performance results in Section IX. Finally wguarantees, we prove our power control algorithms are

conclude in Section X. optimal for homogeneous demands and close to optimal
for heterogeneous demands. In addition, our algorithm
Il. RELATED WORK can adapt to changing client demands while limiting the

Several researchers have studied the usage charagmber of clients required to switch to different APs.
teristics of wireless LANs in different environments, The concept of cell breathing originates from cel-
including a university campus [39], [25], a large corpolular networks. To our knowledge, the cell breathing
ration [44], and a conference [6]. All these studies repoaigorithms proposed for cellular networks are based on
that the client load is unevenly distributed across AP. THecal heuristics, and do not provide performance guaran-
imbalance in client load distribution results in inefficientees [14], [31]. More recently, Saret al. [33] propose
resource utilization and poor performance. a cross-layer framework that coordinates packet-level

As suggested in several previous work (e.g., [30§cheduling, call-level cell-site selection and handafiil a
[22], [17], [5], [8]), one approach to addressing theystem-level load balancing. One of the components in
load imbalance issue is to incorporate APS’ load inttheir framework is cell breathing. Different from our
the association scheme. For example, Papanikos amadrk, which uses power control at the physical layer,
Logothetis [30] determine client and AP associatiotheir cell breathing is performed at MAC layer by having
based on RSSI and the number of clients associateccongested cell allocate less time slots to the mobiles
with each AP. The authors in [22], [17] propose thaat the cell boundary. Such TDMA-based scheme is not
APs maintain a measurement of their load, and broadcagiplicable to IEEE 802.11 DCF (distributed coordinated
beacons containing this load to clients in the cell. Ne¥unction), which is the focus of our work. Moreover
clients receive beacons from multiple APs, and use thimder their cell breathing scheme, the mobiles are still



required to perform load-aware cell-site selection ardifferent clients. In Appendix, we extend the algorithm to
handoff. In comparison, our cell breathing scheme com-more general case that does not require the knowledge
pletely removes the need of client-side modificationsf the distance between APs and clients. It only assumes
(i.e., clients can simply associate with the access poittite received power at any location is proportional to the
based only on signal strength). transmission power, which holds in general even under

There are significant research work on power controbstruction. Moreover, the discrete-power assignment
for ad hoc networks (e.g., [32], [23], [42], [37]). Ad hocalgorithm presented in Section V requires even less
networks are significantly different from infrastructurénformation — only APs’ load information is needed.
wireless networks, and these schemes do not apply toMe estimate the received power at the clients as
our scenarios. follow. The received powerp,(i,j), is a function of

There is a close relationship between our powéransmission powerP(i), and the distance between the
assignment problems and the market equilibria [13§lient and AP, d(i,7). The function depends on the
[21], [18]. We use the insight to develop some of thaireless propagation model in use. We use the following
algorithms. function:

P.(i,j) = ax P;/d(i,5)" (1)

I1l. PROBLEM FORMULATION ) ) _
herea is a constant. It is easy to see that this power

We propose an AP-centric approach o transparen dnction can incorporate both free-space and two-ray

balance load across different APs. The main challenge In .
round reflection models.

this approach is to find appropnaFe transmission powgrIn addition, we can also incorporate other wireless
for each AP such that the total client demand that APs . .
ropagation models as follow. When the wireless prop-

can serve is maximized when clients use the basic asgphtion does not follow Equation 1 (e.g., under obstruc-

ggnsci)n Slghgrrggr('tg%oa:ﬁf;f'a;e (\ENC';[S ttT]E; szz\g:hcglgtrr]ggon), we can approximate the actual wireless propagation
roble.m we first introduceyth: followin 2otations y introducing virtual distance, where the virtual distanc
P ' 9 " follows Equation 1. More specifically, APs collect the

e K: The number of APs measurement of transmission power and received power,
« N:The numbgr of clients and then approximate the actual wireless propagation
« Ci: The capacity of AP _ by finding d’(4,j) (virtual distance),a’ (virtual atten-

e d(i,j): The distance between APand client; uation factor), anda’ that fit the modelP,(i,j) =

o Q. 5|gnql attenuation factor a Pi/d’(i,j)a', where P, (i, ) and P, are from the

« it AP i's power measurement. Then we apply our power assignment
« Dj: clienti's demand . to the virtual distances and virtual attenuation factor.
« P.(i,): received power from AR at client; Conceptually, this is similar to Internet distance em-
« L;: The total load served at AP bedding (e.g., GNP [29]), which embeds a complicated

Based on the notations listed above, we now formulatgternet space onto a simple geometric space. In our case,
the power control problem as follow. Givefs, N, C;, we embed a complicated space, which describes actual
D;, and d(i, j), our goal is to find the transmissionwireless propagation, onto a simpler space that follows
power for each AR, denoted as’;, to maximize system Equation 1.
throughput (i.e., maximizing . L;) given that client;
is assigned to AR when P,.(i,j) > P.(i’,j) for all A Maximizing Throughput for Homogeneous Demands

¢ € {1,2,... K}, and L, min(Cs, 3, D;) for al First we design power control algorithms for homo-

clients j that are mapped to AR. The last equation neous client demands. Without loss of generality, we
reflects the fact that the maximum client demand the A%? ) g Y,

) : ) . . Fonsider each client has one unit of demand. (Since client
i can servicel;, is bounded by its capacity and the total .
demands are homogeneous, we can always scale client

n ) :

there are multiple APs with similar RSSI, the client i%aoergsngr?eagr?it?F\)/\/;afri)?sctl?i/nzjo amr?:;e the cllfenlt. demand
randomly assigned to one of them. e . , bping ot ¢ 'e.nt.s’ to

APs such that either all clients’ demands are satisfied or

the total capacity of all APs are exhausted. It is easy to

IV. MAXIMIZING THROUGHPUT FORCONTINUOUS  gae that such a mapping maximizes our objective — the

POWER total satisfied demand, since the total satisfied demand

In this section, we present power control algorithmeannot exceed the total client demand or APs’ capacity.

for the cases when APs can adjust their power to afiyhpen we prove that there exists a set of powers that

value (i.e., continuous power). The algorithms in thienforces this assignment, when each client selects its
section require APs to estimate the received power AP based on RSSI. Next we derive two algorithms to



find the set of powers that enforces this assignment. Vic A Zmij <

The first algorithm is based on solving a linear program. i€C
The second algorithm is combinatorial, and has a better VieC,jeA z; >0
running time. In the above linear program;;; = 1 indicates that

1) Finding the Mapping.:We develop a polynomial- qjient ; is assigned to AP in the matching. The first

time algorithm to find a mapping of clients to APS;ongiraint indicates that each client is assigned to at

such that either clients’ demands are satisfied or tfllﬁost one AP. The second constraint shows that jAP
total capacity of all APs are exhausted. We call thig assigned to at mosf; clients. Our objective is to

mapping a perfect assignment. We prove tr_lat the_re exigtshimize the weight of the resulting matching.

a set of powers for APs that enforces this assignmentgince there exists an assignment that covers all clients,
under homogeneous client demands. Our proof uses lifjs jinear program has a feasible solution. As mentioned
ear programming duality and complementary slackneggore, it is known that in bipartite graphs the integrality

conditions. . _ . gap of the above Linear Program is one. Thus, there is
The algorithm to find the assignment is as follows: 2, optimum solution with 0-1 variables.
FindAssignment Algorithm The dual of the above linear program is as follows:
1) Given an instance of the power control problem
as specified in Section Ill, we can construct the  yaximize Z)‘i + Zcﬂj (3)
following weighted bipartite graphz(A,C, E), ico ey
where A is the set of APs, and’ is the set of subjectto Vie C,j € A N +m; < wy;

clients. There is an edge between each /A&hd Vie A S0

each clientj. The weight of the edge from AP J € T =

to client j is equal tow;; = aIn(d(3, 7)). Let (x7;]i € A,j € C) denote the optimal solution to

2) Find the minimum weight bipartite matching in Gthe primal program, and\},7}|i € A,j € C) denote
where the capacity of every client i and the the optimal solution to the dual program. We claim that
capacity of an AP, is C,. In other words, among by settinglog(P;) = ;, the resulting assignment of
all the maximal assignments of clients to accesgients to APs corresponds to the assignment:ffs.
points in which a client can be assigned to at mo$t other words, by setting®; = ¢™, client ¢ will be

one AP and an AFR can be matched to at mostassigned to APj for which 2 is maximized, and this

C; clients, find the matching with the minimumassignment is consistent to the mapping as specified by

weight that covers either all the clients or all th@c;j,

APs. To prove the above claim, we first make an obser-

Note that the minimum weighted perfect matchingation that by settingog(P;) = m;, client ¢ will be
problem (even in general graphs) can be solved assigned to APj for which % is maximized. This is
polynomial time [15], [16]. For bipartite graphs, simpleequivalent to that client is assigned to the AR for
primal-dual algorithms are known for this problem (se@hich In % = m; — w;; iS maximized (or equivalently,
e.g. [43]). In addition, the integrality gap of the natural,, . _r is'minimized). Then we show this assignment is
linear programming formulation is one, which means th@bnsistent to the assignment specifiedatfy. From the
we can find the optimal solution by solving a I|ne§6ua| program, it is clear thak; = minjec 4 (w;; — ;).
program (see e.g. [35]). Below we prove that there exisgom complementary slackness conditions; > 0 if
a set of powers that enforce the assignment obtained g only if A, + 7; = wi;. Thus, after this power
the above algorithm. assignment client is assigned to AP if and only if

Theorem 1:There exists a set of powers that enforceggij > 0. Therefore the power assignment realizes the
the assignment obtained tndAssignmentalgorithm.  minimum weighted matching assignment.

Proof: First assume that the perfect matching covers Next we consider the other case, where there exists
all clients. We will consider the other case where thgn assignment that fills all APs’ capacity, but does not
perfect matching covers all APs later. We can formalizgatisfy all clients’ demands. We can use the following
the minimum weighted perfect matching problem agnear program to specify the minimum weighted perfect

follows: matching problem:
minimize > w2 minimize > wyry (4
icCjcA icCjcA
subjectto  Vie C Z zij =1 subjectto  Vie C Z Tij < 1

JjEA JEA



Vjie A Z zij = C; We note that the above set of inequalities correspond to
e, a polytope on which we can optimize any linear function
VieC,je€A z; >0 as a linear program. For example, if we want to find a set
The rest of the proof is similar to the first case. Wé)f_ppV\_/ers such that the sum of the I.OQar'thm of pOWGI’.IS
: . . minimized, we can solve the following linear program:
can write the dual of the above linear program, and find

the optimal set of powers to fill the capacity of all APs.

Again using complementary slackness conditions, we can maximize djeaT;
prove that this power assignment realizes the minimum subject to
weighted matching assignment. ] . . . N
T . . T £ < Wi — W
2) Finding the Power AssignmentThe previous sec- VieC,jeA:m, 1’% €A = mp S wij — wik
tion described how to assign clients to APs to achieve VjieA TS my
maximum throughput. Below we develop two power (6)

assignment algorithms that enforce the client-to-AP as- . .
9 9 The above linear program can be solved combinato-

signment derived above. . : i o
a) An Algorithm Based on the Linear Program-”a”y using the shortest path algorithm. This is more

ming: Below is the algorithm to compute power assign(—eﬁ'c'ent than solving a linear program. For example, Di-

ment for APs using a linear program. The proof of it;'L,kStr"’llS alg_orithm can find the sh(_)rtest. path< v |?),

correctness is essentially in the proof of Theorem 1. where V| s the numl_:Jer Of vertices in the graph. We
) ) convert this problem into finding the shortest paths as

FindPowers1 Algorithm . follow. We construct a directed grapR(A U {r}, E),

1) Solve the following linear program (Linear Proyhere A is the set of APsy is an extra root vertex, and

gram 3). E is the set of edges between them. The length of edges
in graph D are as follows: there is an edge from each
maximize Z)‘i n Z C;m(B) vertexj € A to r with lengthl;, = m;. If clienti € C

is assigned to AP € A, we put an edge fromi € A to
. . ) k in graph D of lengthl;;, = min;cc.y, =1 (wij — wik).
subjectto Vie C,j € A )\ P < wg, J i Wi
. tE S W Let p; be the shortest path from vertgxo r in graphD.
vjeA m; 20 In fact, the inequalities in the program are the triangle
2) Let ({\;|i € C},{n}|j € A}) be the optimal inequalities for the shortest path to the reofThus, it is

ieC jEA

solution to the above linear program. not hard to see that;’s satisfy all inequalities of Linear
3) SetP; =¢™ for all APs ;. Program 6.
4) Scale all powers by the same factor such fhat- Hence, we have the following combinatorial algorithm.
M; wherel; is the minimum power at which AP FindPowers2 Algorithm
Jj can reach all the clients that it has to serve. 1) Given an instance of the power control problem
b) A Combinatorial Algorithm:Next we design a as specified in Section Ill, we can construct the

combinatorial algorithm to find the power assignment  following weighted bipartite graphG(A,C, E),
that enforces the client-to-AP assignment derived in  where A is the set of APs( is the set of clients,
Section IV-A.1. Assume that we are given the client to and F' is the set of edges between them. There is

AP assignment;;’s for i € C,j € A of clients to APs. an edge between each ARnd each clienj. The
Let P; denote the set of powers APuse to realize the weight of the edge from AR to client; is equal
given assignment. if;; = 1, % > C%k for any APk. By to w;; = aln(d(s, j)).

ij ik . .. . . . . .
settingz; = — In(P;) andwi;, = —aIn(d,;,), we know 2) Find the minimum weight b|part|_te m_atchmg in G,
thatz;; = 1 if and only if =% +w;; > —7; + wy, for where_ the capacfcy of every client is and the
all clientsi and APs;j andk. For an APj € A, let f; be capacity of an AP is C;. In other words, among
the farthest client irC' that is connected tg (z,; = 1). all the maximal assignments of clients to access
Let M, be the minimum transmission power at which an ~ Points in which a client can be assigned to at most
AP j can reach clienff; and letm; = —In(M;) The one AP and an AR can be matched to at mos}
power of AP; should be no less thall;, i.e., 7 < m;. clients, find th_e one with minimum total weight.
Thus, a set of powers results in the desirable assignmen8) Construct a directed graph(AuU{r}, E). For two
if and only if it satisfies the following inequalities: APs j andk, setlj; = minjeciry =1 (wij — wik).

For an edgejr from AP j to r, setl;, = m;.
4) Setp; as the shortest path from APto » in graph
—wij + Wik P,
m;j 5) Set the power of AR, P; = e™%7.

VieC,jeA:ax; =1, Vhe A —rf+mf
VjeA T



The Algorithm FindPowers2 outputs a set of powers APs. The main application of this setting is in the best-
that enforces the most efficient assignment. The proof effort services such as web browsing. In these settings,
correctness of this algorithm is from Theorem 1, and thee can derive a benefit even if we cannot transfer files
fact that the shortest paths to vertexn graph D is a at a desirable data rate.
feasible solution to Linear Program 6. We will give a 1) Unsplittable Heterogeneous Demandk: is not
formal of proof of this fact in the proof of Theorem VIl hard to see that under unsplittable demands the problem
in Section 3. of maximizing throughput is NP-complete, since the

The main advantage of AlgorithfRindPowers2 over assignment problem is a multiple knapsack problem [10].
Algorithm FindPowerslis that this algorithm is combi- In fact, a polynomial timel + e-approximation (PTAS)
natorial, and has a better running time. Moreover, as vie known for the multiple knapsack problem [10]. We
will show in Section VII, AlgorithmFindPowers2 can observe that the power assignment problem to maximize
also be applied to optimize the sum of the logarithms dfiroughput for the unsplittable heterogeneous demands is
powers of APs, while maximizing throughput. APX-hard. The proof of this fact is via a reduction from

3) Multiple Preferred APs:In the previous sections, the generalized assignment probl&®Ap) [10], where
we proved that when each client selects the AP witkach item can be assigned to a subset of bins (and not
the maximum RSSI, the set of powers from Algorithm& all of them). We can reduce an instance @AP
FindPowers1 and FindPowers2 maximizes throughput. to the power assignment problem by putting very large
However, for a given set of powers, it is possible fodistances between the items and bins that cannot hold
a client to have multiple APs with similar RSSI. Wethese items. The details of this reduction is omitted in
call all these APs as this client's preferred APs. lthe interest of brevity.
such a case, a client will randomly choose among theseHere, we present an algorithm based on linear pro-
preferred APs, and the performance may degrade, sirgf@mming. This algorithm solves the problem approxi-
the client may choose an AP other than the one in tieately when the number of clients is much larger than
assignment derived above. To handle this case, we ube number of APs. LetD; denote the demand from
Algorithm FindPowers2to enforce stronger inequalities,client . The linear program formulation in Section IV-A
i.e., instead of the inequality; —7;; < w;; —w;, we can changes to:
put the inequalityr; —m; < w;; —w;, — 3, whereg > 0
is a given threshold A represents the smallest signal

strength difference a client can sense). The advantage Minimize _ Z wizij  (7)
of these stronger inequalities is that it ensures each i€CijeA

client has a unique preferred AP, and the performance subject to VieC Z‘T’ii =1
degradation caused by random tie breaking is avoided. jEA

W_e note_that this change to th_e Iinear_p_rogram may make Vje A ZDMU <y

it infeasible due to stronger inequalities. But this is a co

useful heuristic, which we will use in our evaluation, to VieCjeA x>0

find a set of powers that yield a unique assignment. When

the stronger inequalities cannot be satisfied, we then usélhe dual program becomes:

the random tie breaking for assigning a client that has

multiple preferred APs. aximize Z - Z )
icC JEA

B. Maximizing Throughput for Heterogeneous Demands subjectto Vi€ C,j € A D\ + 7 < wjj

In this section, we develop a power control algo- VieC Ai >0
rithm for heterogeneous client demands. We conS|derWe can show that when the number of clients is

two cases: splittable and unsplittable demands. Undr%ruch more than the number of APs, Linear Program 7

unsplittable demands, we gain the benefit of satisfyir}gas solutions in which most of the. s are either0
) . . 5
a demand only if we satisfy this demand completel%r 1. These solutions are simply the corner points of

This setting is motivated by real-time services, e.g., tr}ﬁ? polyhedra. We call them extreme point solutions.

video streaming. Ir) these.sgrwces, if the demanq Cannﬂ]ey are also called basic feasible solutions. We use the
be completely satisfied, it is better not to service th]e

demand, because the video requires certain bandwid?rqowmg algorithm to find power assignment.

to achieve an acceptable performance. In the case FdpdPowers3Algorithm for heterogeneous demands
splittable demands, the throughput from a demand is pro-1) Find the optimum extreme point solutior]; to
portional to the fraction of the demand that is provided by the Linear Program (7), and its corresponding dual



optimum A} and 7} to the dual Linear Program 2) Splittable Heterogeneous Demandhe algo-

(8). rithms for splittable heterogeneous demands is similar
2) SetP; :=¢e™. to that of the homogeneous demands.
3) Connect every clientto the AP for which z}; = Here we give two ways to solve this problem. The
1 if such j exists. Otherwise do not serve first algorithm is to split the demands into small uniform

4) Scale all powers by the same factor such flat> demands and use AlgorithifindPowers2 The second
M;, where M; is the minimum power by which algorithm is based on solving the Linear Programs 7
AP j can reach all the clients that it has to serveand 8. As we noted in the previous section, the primal
As we noted before, unlike the Linear Program 2.inear Program 7 does not always have an intedradr(
the primal Linear Program (7) does not always have & solution. However, as we allow splitting the demands,
integral () or 1) solution. In other words, it might be thethe fractional solution to Linear Program 7 is a valid
case that for somé and j, 0 < z7; < 1. We will say solution. Therefore, we can use the optimal solution to
that client; is assigned integrally if;; = 1 for somei. the dual Linear Program 8 to enforce the most efficient
Otherwise, we will say that it is fractionally set. assignment of clients to APs. The proof of correctness

The following facts are implied by the theory of linearof this algorithm follows from the proof of Theorem 1.
programming. The proof can be found in [34].

Lemma 1:The extreme point optimum solution to theV. MAXIMIZING THROUGHPUT FOR ADISCRETESET

primal programx* assigns at leasy — K clients to APs OF POWERS
integrally, whereN is the number of clients, anfl’ is  |n this section, we consider a variation of the problem
the number of APs. in which the powers of APs can only take certain discrete

~ Proof: Letr denote the number of variables in thejalues. This problem is motivated by the fact that APs
primal Linear Program 7. An extreme point solution irom many vendors have only a handful power levels
defined by the constraints in the linear program, wheyg.g., Cisco Aironet [11]). In this case, the solution of
the inequality constraints are changed to equality coBur linear programming is not directly applicable because
straints. Among these independent variables, at leasthe power values computed by the linear program could
r—K—N should be of typer;; < 0. Their corresponding pe arbitrary fractional numbers. One approach to remedy
variables will be zero due to the last constraint in Lineahijs issue is to round the solution of our linear program
Program 7. Therefore the number of non-zefgs are at {0 the closest discrete values that APs can take. However
mostV + K. Leta and 5 denote the number of clientsyounding may introduce significant performance degrada-
that are assigned integrally and fractionally, respeltive tion. In this section, we present an algorithm that finds
We havea + 8 = N anda + 28 < N + K (since for the power assignments in a more direct way.
each client assigned fractionally, there are at least twoassume that the power of an APc A can be set to
non-zeroz;;’s). Thereforea > N — K. B one of the values from the s¢Py, Py, ..., P¢}, where

In most cases, the number of clients is much larggre > pg > . > p* = (. Our algorithm starts by
than the number of APs. In that case even by droppirRgtting the power of all APs to the maximum power level,
the clients that are assigned fractionally by the aboves: then it tries to improve the solution in every step as
program, the total satisfied demand is still close to thgjow.
optimal. o FindPowers4 Algorithm for discrete powers

The proof of the next lemma is similar to that of The- 1) Assign the maximum poweP? to each APa.
orem 1, and follows from the complementary slackness 2) while there exists an AR of power P%, 1 < i, <

N _ _ h, such that the AP cannot accommodate all the
Lemma 2:The assignment of clients to the APs de- demands assigned to it, we change the power of

fined by the optimum primal solutiox™ can be achieved AP a to P°

8 . . * ig+1*
by setting the power of APs according 1 = ¢™. 3y Amgng all power configurations generated in the
In other words, the optimal primal solution assigns the

. ) X . P, above step, choose the one that yields the highest
clients ¢ only to the AP j for which the rat|od—7;7 is throughput.
maximized. o It is easy to see that the above algorithm is very
*Proof: From the *dual program, it is clear thateicient: the number of iterations in thehile loop is

DiXj = minjea(w; — 7). From complementary slack- o oty i, Therefore the algorithm has a polynomial
ness cond|t|0ns;c;fj*> 0if and only if DA} + ~ Wi+ running time. Next we prove the optimality of the
This means thawj; > 0 if and only if wi; — 7 iS5 46rithm under a certain condition, which is formally
m|n|m|zed (or equivalently,r; — w;; is maX|m|zed). specified in Theorem 2.

Since ”;;:. InPj andwi; = alndij, »; > 00 and  “pe5rem 2:1f there exists a power assignment such
only if 1S maximized. B that each APa has capacity to accommodate all the




demands assigned to it, AlgorithifindPowers4 finds 1) Start with the current power assignment and cur-

such an assignment in polynomial time. rent mapping of clients to APs.

Proof: Let F be the feasible (optimal) power 2) Repeat the following procedure until either all the
assignment. Suppose fdr < i, < h, the power of clients are happy or all the APs are completely
AP a in F is P, and the AlgorithmFindPowers4 utilized:
assigns APa with power Pj. It is easy to see that a) If a clienti is not happy, it tries to find an
if i/, < i,, we find a power assignment in which all AP j, for which 7; — w;; is maximized. It
clients’ demands are served without overloading APs sends an association request to AP
(since the algorithm terminates at non-zero power only b) If an AP j receives an association request
when it finds a solution in which all client demands are from a clients, it accepts the request when
satisfied). Next we prove,, < i, holds. Suppose by it has capacity. Otherwise, it sorts the clients
contradiction, during thevhile loop, there is an AR that are connected or requested to connect in
to which for the first time we assign a powél;i for the decreasing order of theif—w;;. Letk be
i/, = i, + 1. Since the powers of all other APs are at the highest index such that clients2, - - -, &
least the power in the optimal power assignment, the can be served by AP. j accepts these clients,
total demands of clients that prefer APcan be at most and sets its power tdy, — wy; — €.

the total demands assigned doin F". This cannot be At the end of the algorithm, it might be the case that
more than its capacity according to the definitionfaf the powers of all APs are decreased several times. We
Therefore it is a contradiction. B can re-normalize by multiplying all the power values by

Note that the above theorem holds even in the cage:onstan®. Clearly, this will not affect the assignment
where the demands are heterogeneous and unsplittaljyg.clients to APs.

We are assuming that for any power assignment t0The main advantage of the above algorithm is that
APs, every client has a unique preferred AP. Whe tries to only make local adjustments to the existing
a client has multiple preferred APs (i.e., RSSI fromonnections. Moreover, since the changes in the powers
multiple APs are equal or similar to each other), the cliegjye powers ofy, the algorithm converges to the right

has a well-defined deterministic rule for breaking thgo|ution very quickly. Refer to [9] for a detailed analysis
tie. This tie-breaking rule could be different for diffetenof qyction algorithms.

clients. This is a necessary condition, because sometimes
it is impossible to set the powers of APs so that every VIl. POWER OPTIMIZATION

client observes different signal strengths from different In the previous section, we developed power control

APS. EV?” 'f_ such a power as.S|gnm.en'F exists, it IS N%]gorithms that maximize system throughput. In this sec-
hard to find it. The proof of this fact is in our technlcaltion’ we study how to simultaneously maximize system
report [4]. throughput and minimize APs’ power. Power minimiza-
tion is helpful to reduce interference among different
APs. For ease of explanation, we consider homogeneous
So far we examine how to control power to optimizelient demands. The same approach can be applied to
throughput based on given client demands. When clientgilittable heterogeneous client demands.
demands are continuously changing, it is often desirableFirst, we consider the problem of optimizing the power
to find an assignment without requiring many clients téor a given mapping of clients to APs. In this case, we can
handoff to different APs, since the overhead of handoffrite Linear Program 6, and optimize the power given the
is non-negligible. In this section, we develop a dynamiassignment of APs to clients. In the following theorem,
algorithm for this purpose. we prove that the shortest paths to vertér graphD of
We assume that a client will not switch to a differenfAlgorithm FindPowers?2 are in fact the optimal solution
AP, unless its RSSI from a new AP is improved byo Linear Program 6. This in turn gives a combinatorial
a threshold. We define a clieritto be happy if it is algorithm to optimize the sum of logarithms of powers
connected to an AH, and the RSSI frony is at least for a given assignment.
1/y*max(RSSI,) for all a € A, wheremax(RSSI,) Theorem 3:Let (p;|j € A) be the length of the
denotes the maximum RSSI received from all APs, arghortest path from vertey to vertex r in graph D
~ is larger than 1. of Algorithm FindPowers2. Them,’s are the optimal
Our algorithm starts with the existing assignment afolution to the Linear Program 6.
clients to APs, and finds a number of changes to the Proof: Sincep; is the shortest path from to r,
existing assignment so that all the clients are happy after < p; + l; for any j € A. Sop; — pr < wij — Wi,
the changes. We use the auction algorithms introducedd the vectol(p;|j € A) is a feasible solution for the
in [9] to achieve this. Linear Program 6. In order to show that this vector is

VI. DYNAMIC POWERASSIGNMENT



the optimal solution to the Linear Program 6, we prov&able VIII summarizes the five approaches that we
that for any feasible solutioip}|j € A), p; < p; for compare, and their notations.

any j € A. We prove this by induction on the number '

of edges on the shortest path frqmo r. If the number ba’;li?:%i\sic fixed powéfassignment RSSI-bai!Zn;ssociation
of edges on the shortest path tois equal to 1, then [ basiclsmart fixed power assignment | load sensitive associatior
pj < my = p;. Assume thap; > pj for all nodej | REres Gt poer assignment] RSSbased assodato
with the shortest path of size at masedges between [cont/smart | continuous power assignmert load sensitive associatio
j andr, we prove that for a nodé with the shortest

path ofk + 1 edges fronmy to r. Sincepy, is the shortest TABLE |

path, there exists a vertéX for which p, = pp/ + lps. THE FIVE SCHEMES THAT WE EVALUATE

The size of the path fromk’ to r is at mostt¢, thus
P < pre- As (pjlj € A) is a feasible solution, we
know thatp), —p)., < w;, —w; for anyi € C for which
zi = 1. Thusp), — pi., < lpw. Using these inequalities
we getp) < pj, + lew < pr + lgwr = pr. This proves

the induction step. We use both synthetic traces and real traces for our

A few comments follow. First, our power minimiza- . . . . .
o . L .. evaluation. Evaluation using synthetic traces gives us
tion is conditioned on maximizing throughput. This is_, "." . ; .
. . . . - ntuition about how the performance benefit varies with
achieved by ensuring the client-to-AP assignment is tfgﬁ

same as that derived from Section IV-A or Section IV-B fferept parameters: We examine the impact of the
fgllowmg parameters:

Second, we can use a similar approach to minimiz ) )
the sum of APs' powers (while maximizing system ° Total offered load: the ratio between the total client
demand and the sum of all APs’ capacity.

throughput). This is done by minimizing the convex
function>.., P =, 4 ¢ ™ instead of minimizing The number of APs

We use the total throughput as the performance metric.
It represents the total amount of client demand that
can be serviced. A higher throughput indicates a more
efficient resource utilization, and hence is preferred.

jeatl Cetrib it ; :
ZJEA —m; in Linear Program 6 usingnterior point « The distribution of clltlant.loc:_;\tlons )
methods(see e.g., [19]). We use two types of distributions to generate client

Finally, we note that minimizing the power while maxJocations: uniform distribution and normal distribution.
imizing the system throughput is sometimes hard. W&hen a normal distribution is used, we generate clients’
prove this by showing that finding an assignment of aff @dy coordinates such that they each follows a normal
clients to APs with minimum total power and maximunflistribution with the mean at the center of the area.
throughput is APX-hard. Refer to our technical report [4]Normal distribution reflects the case where clients are

for the proof. more concentrated in certain area. We vary the standard
deviation in the normal distribution to generate different
VIII. EVALUATION METHODOLOGIES degrees of spatial locality.

We evaluate the combinations of three AP powe In addition, we also use real traces to estimate the
: . i P ;5erformance benefit of our power control schemes in a
control schemes with two client association schemes.

i _ realistic environment. Table VIII shows the traces that
« Basic power control: all APs are assigned the sam@, yse in our evaluation. These traces cover a diverse
flxed.power. ) set of environments: university campus, conference, and
« Continuous power control: the APS’ power is detery |arge corporate. (Dartmouth traces span many campus
mined by our power control algorithm, described ifyijgings, and we use the traces from three buildings
Section IV-B, for continuous power assignment. |5pejed as AcadBldgl0, SocBldg4, LibBldg2 in their
« Discrete power control: the APs’ power is deteryaces. We report the performance results for LibBldg2,
mined by our power control algorithm, describedyng the results for the other two buildings are similar.)
in Section V, for discrete power assignment. The \ye yse the traces in the following way. All the traces

discrete power levels are based on Cisco Airongtcqrqg the amount of traffic generated from each client.
350 series [11]. It has the following 6 power levels:

20 dBm, 17 dBm, 15 dBm, 13 dBm, 7 dBm, and

Location Time # APs # clients
dBm. UCSD SIGCOMM traces [40]| Aug. 29-31, 2001 4 195
o Basic client association: a client associates with theS D?rtrgouth traces [12][38] glar- 21090919 ~ 2f1J/2bldg- var;ible
. tanfor campus traces ept.
AP that _has the hlgh_eSt RSS" . . IBM traces [20] Aug. 2002 variable variable
« Smart client association: a client associates with the
AP with the maximum available capacity among all TABLE II
the APs whose RSSI exceeds its received sensitivity FOUR TRACES USED IN OUR EVALUATION

threshold.



For every 5-minute time interval, we compute the average homogeneous load
data rate for each client, and use it as the client demand. . C
In order to examine the impact of different load condi-
tions, we also scale the traffic so that the total offered
load varies from 25% to 100%. During the scaling, we try
to maintain the relative data rate from different clients;
for cases when a client's demand after scaling exceeds
an AP’s capacity, we split the demand into multiple . e
clients, each assigned with at most 2Mbps. Dartmouth s 20 2; e
and UCSD traces both record the APs’ locations, so . .
. 1g. 1. Performance comparison under varying offered loacsrevh

use them for placing the APs. For the other two tracegs aps are deployed, and each client generates 1Mbps demand.
we randomly place the APs in a 500m*500m area. Since
none of the traces record clients’ location, we have to
synthetically generate clients’ location. As before, we Figure 2 shows the total throughput as we vary the
use both uniform and normal distribution for placing theumber of APs deployed in the area. The benefit of
clients. Therefore the use of real traces mainly allow us toad balancing achieved using either power control or the
explore how realistic traffic distributions among differensmart AP selection increases with the number of APs.
clients affect the performance of cell breathing. This is because when the number of APs increases, it

Unless otherwise specified, we use the signal attenig- more likely to have a lightly loaded AP nearby to
ation factora = 4, and AP’s capacity is 5 Mbps, whichabsorb some load from overloaded APs. In addition, the
approximates the data rate in 802.11b after taking intwrves of continuous and discrete assignments overlap,
account of the MAC overhead. both of which are close to the performance of the smart

AP selection.

basic/basic —_—
cont./basic

40 | discrete/basic
basic/smart
cont./smart

30

20

10

total throughput (Mbps)

IX. EVALUATION RESULTS

homogeneous load

In this section, we present our evaluation results using 400
both synthetic and real traffic traces.

basic/basic —

350 fcont./basic
discrete/basic

300 [ basic/smart
cont./smart --oeeo-

250

A. Homogeneous client demand

First, we evaluate the different schemes using homo-
geneous client demand. In our evaluation, we randomly
place clients and APs in a 500m*500m area, and all - " " " m .
clients generate 1Mbps traffic. ¥ aps

Figure 1 shows the total throughput as we vary thag. 2. Performance comparison for a varying number of APs, @her
offered load. We make the following observations. Firsthe offered load is 1, and each client generates 1Mbps demand.
our power control schemes (both discrete and contin-
uous assignments) out-performs the common practiceNext we examine the impact of the distribution of
(basic/basic), which uses a fixed power and lets tlodient locations. Figure 3 shows the performance as we
clients select APs based on RSSI. The performance \afry the standard deviation (in a normal distribution),
our approaches is close to that of using the smart Afhich is used to generate client locations. Note that a
selection (basic/smart and cont./smart), which serve aaller standard deviation indicates a stronger spatial
the upper bound. Second, the continuous assignmémtality in the client load. As we can see, for small
yields better performance than the discrete assignmeayviations (i.e., most of clients are concentrated in a
since the latter has more limited power choices. (Not®rtain area), the throughput under the basic scheme is
that it is not guaranteed that there exists a discrete poweuch lower than the sum of APs’ capacity. This indicates
assignment that results in maximum throughput.) Thiréhefficient resource utilization. In comparison, the load
the cont./smart overlaps with basic/smart, which sugge&talancing via continuous power assignment improves
that the AP power control scheme does not interfere withroughput by up to a factor of 9. The performance
the smart AP selection implemented at the clients. Finalbenefit of discrete power control is lower, but still signifi-
we observe that the performance benefit of the smant: it often doubles the throughput in such cases. When
AP selection and our power control schemes tends tioe clients are more evenly distributed, the performance
increase with the offered load. This is consistent withenefit of load balance reduces, since in such cases APs
our expectation, since load balancing is more useful fawad is already evenly distributed even under the basic
high load situations. scheme. Finally, as before, the smart AP selection works

total throughput (Mbps)




equally well with and without the power control at theraces. Our results show that our power control can sig-
APs. Therefore in the remaining evaluation, when clientsficantly out-perform the popular fixed power schemes,
apply the smart AP selection, we only consider APsind perform comparably to the smart AP selection that
using a fixed power (since the performance of APs’ usingquire cooperation between clients and APs. Moreover,

power control is similar). the performance benefit is highest for an uneven spatial
distribution of client load. Such scenarios are quite

homogeneous load with nonuniform client location common in practice because clients tend to localize

S o S themselves in particular areas (e.g., classrooms, meeting

£ a0} . I e rooms, airport gate area with departing flights). These

results demonstrate the effectiveness of the cell bregthin
approach for handling sporadic congestion and improv-
ing resource utilization.

30

20 ¥
N basic/basic ——
cont./basic

10 r discrete/basic
basic/smart

cont Jomart e X. CONCLUSION

o ot 02 09 0ef 05 0eE 07 We have developed a set of load balancing algo-
rithms for handling sporadic client congestion in a wire-
less LAN. Our algorithms provide capacity where it
is needed, and when it is needed. Consequently, more

total throughput

0

normalized standard deviation in user locations

Fig. 3. Varying sigma (10 APs, offered load=1, demand per tti&n

B. Real WLAN traces clients are satisfied and the overall utilization of the
In this section, we present the performance resuf&work is improved. _ _
based on real WLAN traces. Existing solutions for handling congestion fall short

Figure 4 shows time series plots of the performan@nce they either result in inefficient utilization of re-
results for the four WLAN traces. In all cases, oupources and poor performance, or require changes to
continuous power control algorithm achieves simildihe client software, which is hard to realize in practice.
throughput as the smart AP selection scheme, and signfAur proposal, cell breathing, achieves load balancing by
cantly outperforms the basic scheme. The discrete powdhamically reconfiguring cell boundaries. It does not
assignment performs slightly worse than the continuotigduire changes to the client software or the standard,
power assignment due to limited flexibility in powerthereby making it rapidly deployable. Cell breathing is
selection. However its throughput is still considerabljmplemented by adjusting the power at each AP in the
better than that of the basic scheme. network. We show that our power control algorithms

To examine the impact of different offered load, wavork for both homogeneous and heterogeneous client de-
scale all clients’ traffic by a factor. As shown in Figure 5mands. In addition, the dynamic version of the algorithm
when the network is lightly loaded, all the schemegan adapt to changes in client demands by maximizing
yield comparable performance; when the network e total satisfied demand while limiting the number of
heavily loaded, the three load balancing schemes achi@lignts that switch APs.
significantly higher throughput than the basic scheme, We demonstrate the effectiveness of cell breathing,
by up to 50%. In addition, the performance differenc@nd show that it significantly out-performs the popular
between the continuous and discrete power assignmefit¢d power schemes and perform comparably to the
increases as the load increases. This is because dugAghisticated load balancing techniques where the client
a high load, the number of good power assignments d§d the APs are required to cooperate with one another.
fewer, which makes the discrete assignment harder #hder high load, we show that with cell breathing
find them due to limited power choices. the throughput improves by up to 50% for uniform

We further study how the distribution of client lo-distributions of client locations, and by up to an order
cations affect the performance. Figure 6 summariz€§ magnitude for non-uniform client distributions.
the results. The performance benefit of power control
scheme is significant, by up to an order of magnitude REFERENCES
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There has been numerous work on market equilibriugeficiency of the power assignment is at lelastn fact,
problem with linear utilities. There are three kinds ofn every matching at leasgt clients from.sS itself remain
algorithms currently known: (i) convex programmingunmatched. A well known fundamental theorem in the
based [21], (ii) primal-dual based [13], and (iii) auctiorgraph theory says that the converse is also true.
based [18]. The first kind of algorithms, theoretically The following lemma can be proved in more than one
has provided the fastest known running time and matheay, and is a well known fundamental theorem in the
matically has been able to provide various properties gfaph theory. A special case of this theorem, where
the market equilibrium. The drawback is that these alg0; is called Hall's theorem.
rithms need the input upfront. Auction based algorithms, Lemma 3:1If the deficiency isk, there exist a sef of
on the other hand, are truly distributed. In between atge clients such that the neighborhood capacitySds
the primal dual algorithms: they are not distributed, buf| — &.
still do not require the input upfront. This lemma clearly implies that in faét unmatched

Here we describe a primal-dual type algorithm. Thelients belong toS. We take the smallest suchi. By
idea is inspired by [13], but note that there are specifitSing the submodularity of the deficiency function or the
difference between [13] and this. One major difference fpermodularity of the neighborhood capacity function,
the loop invariant. [13] makes sure that all the deman@§i€ can prove that there exists a unique sSchrhe
subsume the supplies. From that point onwards, tiuition behind taking the smallest is that we want to
algorithm keeps trying to increase the prices and redug@rmer the unmatched clients as much as possible so
the demands so that the demands still subsume #h@t we can do something for them.

supplies; but not strictly, in other words total demand Since S h?‘Sk uqmatched clients, and the neighbor-
is equal to the total supplies. hood capacity ofS is exactly % less than the clients in

Clearly if we have more capacity on the APs, demart 2!l the neighbor capacity will be assigned o and
cannot subsume the supply. If we have less capacity gpstill needs some more ne|ghborhood_ capacity. In this
the APs, the equilibrium does not even exist. If we ha/g2Se. we take all the APs not in the neighborhood of
the total capacity equal to the total number of clients, wid Start raising power on them. We do not raise powers
get the solution when we get the loop invariant for th@'Pitrarily. Instead we do it in a systematic fashion. We
first time. That is, if demand can subsumes supply, th&UItiPly the power of every AP not in the neighborhood
the only way in this case is that demand is equal to tff © Py @ variablez. We initialize = = 1. We start

supply. So we cannot follow the loop invariant techniquificreéasing the value of gradually. The following facts
of [13]. can be easily proved by our power model of received

Instead we start with an arbitrary assignment of pog_owers.
itive powers to each AP. Suppose is the power as- * All the edges from the complement ¢f to the
signment vector. We define tregjualitygraph as follow: neighborhood ofS' do not remain equality edges,
one side of the equality graph include all the clients, and SO We remove them. Note that these edges are not
the other side include all the APs. Suppose we have ~ N€eded in the first place. _
clients, and the total capacity on the AP’s is at least  * All other equality edges remain equality edges.
Let j denote the client index, anddenote the AP index. + Eventually some edge froi to the complement of
We put an equality edge betwegand;j wheni provides the neighborhood set df will be eventually added
the best reception tg. Note that there can be more than ~ Into the set of equality edges. At this point, we stop
one AP that provides the best reception to a client, but increasingz. We call it a phase.
there is always at least one AP that provides the bestThe following lemma is self evident.
reception to a client. Lemma 4:After a phase, exactly one of the following

Theorem 4:If P is the equilibrium power, the equality WO €vents will happen.
graph has a complete matching for the clients, i.e., thee The size of the smallest set with deficiendy
size of the maximum matching is This means that the has increased. In fact, the new smallest set with
total throughput is maximized. deficiencyk containssS.

Next we prove the above theorem. Define the defi- ¢ The deficiency of the new power assignment has
ciency of a power assignment as the minimum number of _ decreased. We call it an iteration. -
clients remain unserved. In other words, the deficiency The algorithm terminates when there is no deficient
is n minus the size of the maximum matching in th&€t Clearly the number of iterations in this algorlth_m
equality subgraph. Supposgis a set of clients. Define 'S at most the number.of clients, and in each |ter{:1t|on
the neighborhood capacity f as the total capacities of e number of phases is at most the number of clients.
all those APs that have at least one edge figrBuppose Hence the algorithm terminates in tinge(n*) number
the neighborhood capacity of some seis || — k. The Of matching computations.
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