
Power Optimization for Connectivity Problems

Mohammad T. Hajiaghayi1, Guy Kortsarz2, Vahab S. Mirrokni1,
and Zeev Nutov3

1 Computer Science and Artificial Intelligence Laboratory, MIT
{mirrokni, hajiagha}@csail.mit.edu

2 Department of Computer Science, Rutgers University-Camden
guyk@crab.rutgers.edu

3 Computer Science Division, The Open University of Israel
nutov@openu.ac.il

Abstract. Given a graph with costs on the edges, the power of a node is
the maximum cost of an edge leaving it, and the power of the graph is the
sum of the powers of the nodes of this graph. Motivated by applications in
wireless multi-hop networks, we consider four fundamental problems un-
der the power minimization criteria: the Min-Power b-Edge-Cover prob-
lem (MPb-EC) where the goal is to find a min-power subgraph so that
the degree of every node v is at least some given integer b(v), the Min-
Power k-node Connected Spanning Subgraph problem (MPk-CSS), Min-
Power k-edge Connected Spanning Subgraph problem (MPk-ECSS), and
finally the Min-Power k-Edge-Disjoint Paths problem in directed graphs
(MPk-EDP). We give an O(log4 n)-approximation algorithm for MPb-EC.
This gives an O(log4 n)-approximation algorithm for MPk-CSS for most
values of k, improving the best previously known O(k)-approximation
guarantee. In contrast, we obtain an O(

√
n) approximation algorithm

for MPk-ECSS, and for its variant in directed graphs (i.e., MPk-EDP),
we establish the following inapproximability threshold: MPk-EDP cannot

be approximated within O(2log1−ε n) for any fixed ε > 0, unless NP-hard
problems can be solved in quasi-polynomial time.

1 Introduction

Wireless multihop networks are an important subject of study due to their exten-
sive applications (see e.g., [8,24]). A large research effort focused on performing
network tasks while minimizing the power consumption of the radio transmit-
ters of the network. In ad-hoc networks, a range assignment to radio transmitters
means to assign a set of powers to mobile devices. We consider finding a range
assignment for the nodes of a network such that the resulting communication
network satisfies some prescribed properties, and such that the total power is
minimized. Specifically, we consider “min-power” variants of three extensively
studied “min-cost” problems: the b-Edge Cover problem and the k-Connected
Spanning Subgraph Problem in undirected networks, and the k-Edge-Disjoint
Paths problem in directed networks.
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In wired networks, generally we want to find a subgraph with the minimum
cost instead of the minimum power. This is the main difference between the
optimization problems for wired versus wireless networks. The power model for
undirected graphs corresponds to the static symmetric multi-hop ad-hoc wireless
networks with omnidirectional transmitters. This model is justified and used in
several other papers [3, 4, 14].

An important network task is assuring high fault-tolerance ( [1–4, 11, 18]).
The simplest version is when we require the network to be connected. In this
case, the min-cost variant is just the min-cost spanning tree problem, while
the min-power variant is NP-hard even in the Euclidean plane [9]. There are
several localized and distributed heuristics to find the range assignment to keep
the network connected [18, 24, 25]. Constant approximation guarantees for the
min-power spanning tree problem are given in [4, 14]. For general k, the best
previously known approximation ratio for MPk-CSS was 2k = O(k) [5, 11,19].

Min-cost k-connected and k-edge connected spanning subgraph problems
were extensively studied [7, 10, 12, 13, 16, 17]. While the min-cost k-edge con-
nected spanning subgraph problem admits a 2-approximation algorithm [12,13],
no constant approximation guarantee is known for the min-cost k-connected
spanning subgraph problem. The best known approximation ratios for the latter
are O(ln k · min{√k, n+k

n−k ln k}) [17] and O(ln k) for n ≥ 2k2 [7].
The notation and preliminaries used in the paper are as follows. Let G =

(V,E) be a graph. For disjoint X,Y ⊆ V let δG(X,Y ) = δE(X,Y ) be the set
of edges from X to Y in E. We will often omit the subscripts G,E if they are
clear from the context. For brevity, δE(X) = δE(X,V − X), and degE(X) =
|δE(X)| is the degree of X. For a function g on a groundset U and S ⊆ U let
g(S) =

∑
u∈S g(u). Given edge costs c(e), e ∈ E, the power pG(v) = pE(v)

of a node v in G is the maximum cost of an edge incident to v in E, that is,
p(v) = maxe∈δE(v) c(e). The power of G is p(G) = pE(V ) =

∑
v∈V p(v). Note

that p(G) differs from the ordinary cost c(G) =
∑

e∈E c(e) of G even for unit
costs. In this case, if G has no isolated nodes then c(G) = |E| and p(G) = |V |.
For example, if E is a perfect matching on V then p(G) = 2c(G). If G is a
clique then p(G) is roughly c(G)/

√
m/21. The following statement whose proof

is presented in Section 3 shows that these are the extremal cases also for general
edge costs.

Lemma 1. For any graph G = (V,E) holds: c(G)/
√|E|/2 ≤ p(G) ≤ 2c(G).

For a forest T , c(T ) ≤ p(T ) ≤ 2c(T ).

Throughout the paper, let G = (V, E) denote the input graph with nonnega-
tive costs on the edges; n denotes the number of nodes in G, and m the number
of edges in G. Let opt denote the optimal solution value of an instance at hand.
Given G, our goal is to find a minimum power spanning subgraph G of G that
satisfies some prescribed property. In undirected graphs, we consider the follow-
ing two variants. Given an integral function b on V , we say that G (or E) is

1 In this paper, we ignore that some numbers might not be integers, since the adaption
to floors and ceilings is immediate.
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a b-edge cover if degG(v) ≥ b(v) for every v ∈ V , where degG(v) = degE(v) is
the degree of v in G. In the Minimum Power b-Edge Cover Problem (MPb-EC),
G is required to be a b-edge cover; the Minimum Power k-Edge Cover Problem
(MPk-EC) is a particular case when b(v) = k for all v ∈ V . It is easy to see that
the greedy algorithm that for every v ∈ V picks the lightest b(v) edges incident
to v is a (k + 1)-approximation algorithm for MPb-EC, where k = maxv∈V b(v).
The following simple example shows that the (k+1)-approximation ratio is tight
for this greedy algorithm. Take k+1 stars with k leaves each, and add edges of a
clique on their centers. All edges have unit costs. Set b(v) = k if v is a star center
and b(v) = 0 otherwise. The greedy algorithm may pick the edges of the stars,
thus getting a solution of value (k + 1)2. The optimal solution is obtained by
picking the clique, and has power k+1. This example easily extends to MPk-EC.
We prove:

Theorem 1. MPb-EC is APX-hard. It admits an O(log4 n)-approximation
algorithm.

A graph G is k-(node) connected if there are k internally disjoint paths be-
tween every pair of its nodes. In the Minimum Power k-Connected Spanning
Subgraph Problem (MPk-CSS) G is required to be k-connected. The motivation
of the “min-power” variant for wireless networks is similar to the one of the
“min-cost” variants for wired networks, e.g., for MPk-CSS we require that the
network remains connected even in failure of up to k−1 terminals. The problem
admits an O(k)-approximation algorithm [5,11]. We prove:

Theorem 2. MPk-CSS is APX-hard. Unless k = n − o(n), MPk-CSS admits
an O(log4 n)-approximation algorithm. For k = n − o(n), MPk-CSS admits an
O(

√
k)-approximation algorithm.

Theorem 2 is proved by combining Theorem 1 with part (i) of the following
theorem, and using the currently best known approximation guarantees [7, 16]
for the Min-Cost k-Connected Spanning Subgraph problem.

Theorem 3. (i) If there exists an α-approximation algorithm for the Min-Cost
k-Connected Spanning Subgraph problem and a β-approximation algorithm
for MPk-EC then there exists a (2α + β)-approximation algorithm for MPk-
CSS.

(ii) If there exists a ρ-approximation for MPk-CSS then there exists a (2ρ + 1)-
approximation for the Min-Cost k-Connected Spanning Subgraph problem.

Note that part (ii) of Theorem 3 implies that MPk-CSS is almost as hard to
approximate as the Min-Cost k-Connected Spanning Subgraph problem.

We also consider the Min-Power k-Edge Connected Spanning Subgraph (MPk-
ECSS) problem where G is required to be k-edge connected. This problem admits
a O(k)-approximation algorithm [11]. We prove:

Theorem 4. MPk-ECSS is APX-hard and admits an O(
√

n)-approximation
algorithm.
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Power optimization problems were considered in asymmetric networks as
well [14]. This setting is mainly motivated for the purpose of broadcasting or
multicasting in multihop wireless networks. In this case, the power of a node v
is the maximum cost of an edge outgoing from v. We give some evidence that
minimum-power connectivity problems in directed graphs are hard by showing a
strong inapproximability result for a simple variant: the problem of finding the
minimum-power subgraph that contains k edge-disjoint directed (s, t)-paths. We
call it the Min-Power k-Edge-Disjoint Paths (MPk-EDP) problem, since it is the
“min-power variant” of the Min-Cost k-Edge-Disjoint Paths problem. We prove
the following strong inapproximability result for MPk-EDP, in contrast to the
polynomial solvability of the “min-cost” case.

Theorem 5. MPk-EDP cannot be approximated within O(2log1−ε n) for any fixed
ε > 0, unless NP-hard problems can be solved in quasi-polynomial time.

We also note that, in contrast, the problem of finding Minimum Power k-
Vertex-Disjoint Paths (from s to t) in directed graphs can be solved in polynomial
time as follows. First, we can assume that we know the power p of s (there are at
most n possible values) and thus we know all optimum edges incident to s. Now,
we give zero cost to all these edge (whose original costs were at most p), delete
all the other edges incident to s, and compute the minimum cost k internally
vertex-disjoint paths using the polynomial-time min-cost k-flow algorithm of
Orlin [21], and a flow decomposition. As the outdegree of every internal node is
one, and the outdegree of t is zero, this is an optimal solution to our minimum
power vertex-disjoint case.

Table 1 summarizes our main results.

Table 1. Our approximation ratios and hardness results (α is the best approximation
ratio for the Min-Cost k-Connected Spanning Subgraph problem)

Problem Approximation Ratio Hardness

MPb-EC min(O(log4 n), k + 1) APX-hard

MPk-CSS min(O(log4 n) + 2α, k(1 + o(1)) APX-hard, Ω(α)

MPk-ECSS O(
√

n) APX-hard

MPk-EDP – Ω
(
2log1−ε n

)

Theorem 1 is proved in Section 2, Lemma 1 and Theorems 2, 3, and 4 are
proved in Section 3, and finally Theorem 5 is proved in Section 4. In the rest of
this section we show that already very restricted instances of MPb-EC, MPk-CSS,
and MPk-ECSS are APX hard, thus proving the hardness results of Theorem 1,
2, and 4.

Theorem 6. MPk-EC, MPk-CSS, and MPk-ECSS are APX-hard even for
k = 1.

Proof. To prove the theorem, we will use the following well-known formulation
of the Set-Cover Problem (SCP); in this formulation, J is the incidence graph
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of sets and elements, where A is the family of sets and B is the universe (we
denote the edge set by I).
Input: A bipartite graph J = (A ∪ B, I) without isolated nodes.
Output: A minimum size subset T ⊆ A such that every node in B has a neighbor
in T .

The reduction is as follows. Given an instance J = (A ∪ B, I) for the SCP,
we construct a graph G = (V ∪ {r}, E) with edge cost function c by setting
c(e) = 1 for every e ∈ E, adding a new node r and edges of cost zero from r
to every a ∈ A; for MPk-EC we set b(v) = 1 for every v ∈ V , and for MPk-CSS
and MPk-ECSS we set k = 1. It is easy to see that SCP has a solution of size
τ if and only if the obtained instance of MPk-EC (MPk-CSS/MPk-ECSS) has a
solution of size |B| + τ .

A 4-bounded instance SC-4 of SC is one in which all sets have size at most 4,
that is degJ(a) ≤ 4 for every a ∈ A. Any solution to SC-4 has size ≥ |B|/4. Thus
any solution of power |B| + τ in our MPk-EC (MPk-CSS/MPk-ECSS) instance
of power at most (1 + ε)(|B| + τ) gives us a solution to SC-4 of size at most
τ +τε+|B|ε ≤ (1+5ε)τ . Consequently, a (1+ε)-approximation to MPk-EC gives
a (1 + 5ε)-approximation to SC-4. Since SC-4 is APX-hard [22], APX-hardness
of MPk-EC (MPk-CSS/MPk-ECSS) follows.

Finally to obtain APX-hardness of MPk-EC (MPk-CSS/MPk-ECSS) for k >
1, we add vertices t1, . . . , tk−1 to graph G constructed above and we add edges
of zero cost from them to all previous vertices. The proof again follows from the
fact that each vertex corresponding to an element should be adjacent to at least
one edge of cost one. �

2 Proof of Theorem 1

In this section, we present the proof of Theorem 1. Throughout this section we
assume that c(e) ∈ {1, . . . , n4} for every e ∈ E . In particular, opt ≤ n6. Indeed,
let c be the least integer so that {e ∈ E : ue ≤ c} is a b-edge cover. Edges of
cost ≥ cn2 do not belong to any optimal solution, and thus deleted from the
graph. Edges of cost ≤ c/n2 in fact get zero costs, as adding all of them to the
solution affects only the constant in the approximation ratio (we also update
b(v)’s, v ∈ V , accordingly). This gives an instance with cmax/cmin ≤ n4, where
cmax and cmin denote the maximum and the minimum nonzero cost of an edge
in E , respectively. Further, for every e ∈ E set c(e) ← �c(e)/cmin	. It is easy to
see that the loss incurred in the approximation ratio is only a constant, which
is negligible in our context.

Let b(V ) =
∑

v∈V b(v). For an edge set F and v ∈ V , let

bF (v) = max{b(v) − degF (v), 0}
be the residual deficiency of v w.r.t. F (so b(v) = b∅(v)). Also, bF (V ) =∑

v∈V bF (v). Our algorithm runs with a parameter τ that should be set to
τ = opt to achieve the claimed approximation ratio. Specifically, we will prove:



354 M.T. Hajiaghayi et al.

Lemma 2. There exists a polynomial time algorithm that given an instance of
MPb-EC and an integer τ , either returns an edge set E′ ⊆ E such that

pE′(V ) = τ · O(lg4 n) (1)

bE′(V ) ≤ lg3 n (2)

or establishes that τ < opt.

Note that if τ < opt, the algorithm may return an edge set E′ that satisfies
(1) and (2). Let us now show that Lemma 2 implies Theorem 1. Since opt is
not known, we apply binary search to find the minimum integer τ so that an
edge set E′ satisfying (1) and (2) is returned; then pE′(V ) = opt ·O(lg4 n) (note
that binary search for appropriate τ requires O(lg n6) = O(lg n) iterations).
Then we apply the greedy algorithm on G − E′ to compute a bE′ -edge cover
E′′ of power ≤ opt · (lg3 n + 1). Then E = E′ ∪ E′′ is a feasible solution,
and pE′∪E′′(V ) ≤ pE′(V ) + pE′′(V ) = opt · O(lg4 n). Thus Lemma 2 implies
Theorem 1.

The proof of Lemma 2 follows. Let D(F ) = {v ∈ V : bF (v) > 0} be the
set of deficient nodes w.r.t. F , and D = D(∅) = {v ∈ V : b(v) > 0}. Let
µ = min{b(v) : v ∈ D}.
Lemma 3. There exists a polynomial time algorithm that given an instance of
MPb-EC with max{b(v) : v ∈ D} ≤ rµ and integers W , T , and τ , returns an
edge set F such that

p(F ) ≤ 2 (W |D| + b(V ) lg W/T ) , (3)

and if τ ≥ opt then

bF (V ) ≤ τ (T lg W + µr/(2W )) . (4)

Proof. Let E0 = {e ∈ E : 1 ≤ c(e) ≤ 2} and Ei = {e ∈ E : 2i + 1 ≤ c(e) ≤ 2i+1}
for i = 1, . . . , lg W . Consider the following algorithm that starts with F = ∅:
For i = 0 to lg W do:

While there is v ∈ V with |δEi
(v,D(F ))| ≥ 2iT do F ← F + δEi

(v,D(F ))
End For
It is easy to see that the algorithm is polynomial. Let F be the edge set computed
by the algorithm. Let p′ =

∑
v∈D pF (v) and p′′ =

∑
v∈V −D pF (v) = pF (V )− p′.

The following two claims show that (3) holds.

Claim: p′ ≤ 2W |D|.
Proof: pF (v) ≤ 2i+1 ≤ 2W for every v ∈ D. Thus p′ ≤ 2W |D|. �

Claim: p′′ ≤ 2b(V ) lg W/T .

Proof: If at iteration i we added to F edges incident to v, then the deficiency
of v drops by at least 2iT . Thus the total number of nodes in V − D incident
to edges added at iteration i is at most b(V )/(2iT ). Since every added edge
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has cost at most 2i+1 the total increase in the power at iteration i is at most
2i+1b(V )/(2iT ) = 2b(V )/T . The claim follows. �

Assume that τ ≥ opt. Let O be a feasible solution with p(O) ≤ τ . Let
A = {e ∈ O−F : c(e) ≤ 2W}, B = (O−F )−A. The following two claims show
that O − F decreases the deficiency of D(F ) by at most τ (T lg W + rµ/2W ).
This implies (4), since bF (V ) = bF (D(F )).
Claim: A decreases the deficiency of D(F ) by at most τT lg W .
Proof: Fix some i ≤ lg W . Let Ai = Ei ∩ A. Since pAi

(V ) ≤ τ , the edges in Ai

are incident to at most τ/2i nodes. Note that |δAi
(v,D(F ))| ≤ T2i for every

v ∈ V . Thus each Ai reduces the deficiency of D(F ) by at most τT . The claim
follows. �

Claim: B decreases the deficiency of D(F ) by at most µrτ/(2W ).

Proof: The number of nodes in D(F ) adjacent to the edges in B is at most
τ/(2W ). The deficiency of each v ∈ D(F ) is at most rµ. The claim follows. �

The proof of Lemma 3 is complete. �

Corollary 1. There exists a polynomial time algorithm that given an instance
of MPb-EC with max{bv : v ∈ D} ≤ rµ and an integer τ , returns an edge set F
such that: p(F ) = τ · O(r + lg2 n) and if τ ≥ opt then bF (V ) ≤ b(V )/2.

Proof. For W =2τµr/b(V ) and T = b(V )/(4τ lg W ), the algorithm from Lemma 3
computes an edge set F such that (note that W = 2τ · (µr)/b(V ) ≤ 2τ ≤ 2n6):

p(F ) ≤ 2
(

2τr
µ|D|
b(V )

+ 4τ lg2 W

)

≤ 4τ
(
r + 2 lg2 W

)
= τ · O(r + lg2 n).

If τ ≥ opt then:

bF (V ) ≤ τ

(
b(V )/4

τ
+

µrb(V )
4τµr

)

= b(V )
(

1
4

+
1
4

)

=
b(V )

2
.

�

Proof of Lemma 2: Consider the following algorithm that starts with E′ = ∅:
Algorithm b-Edge-Cover(τ )
While b(V ) ≥ lg3 n do:

- Let V0 = {v ∈ V : 1 ≤ b(v) ≤ 2} and Vj = {v ∈ V : 2j + 1 ≤ b(v) ≤ 2j+1},
j = 1, . . . , lg n.

- Let q be an index so that b(Vq) ≥ b(V )/ lg n.
- Compute F as in Corollary 1 with b′(v) = b(v) if v ∈ Vq and b′(v) = 0

otherwise.
- If bF (Vq) ≤ b(Vq)/2 then: E′ ← E′ ∪F , G ← G−F , b ← bF ; Else declare

“τ < opt” and STOP.
End While
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If the algorithm declares “τ < opt” then this is correct, by Corollary 1. Let
us assume therefore that this is not so.

Claim: The algorithm calls to the algorithm from Corollary 1 O(lg2 n) times.

Proof: Let Bt be the total residual deficiency before iteration t + 1 of the while
loop, where B0 = b(V ) ≤ n2. We have Bt+1 ≤ Bt(1 − 1/(2 lg n)), so Bt ≤
B0(1 − 1/(2 lg n))t. Thus after at most

lg(n2/ lg3 n)
− lg(1 − 1/(2 lg n))

= O(lg2 n)

iterations the condition in the while loop is met, and the iterations stop. �

From the last claim and Corollary 1, we obtain that pE′(V ) = τ · O(lg4 n)
(note that when Algorithm b-Edge-Cover(τ ) calls Corollary 1, we can set
r = 2 since b(v)’s of all v ∈ Vq are within a factor 2 of each other). �

The proof of Theorem 1 is now complete.

3 Proof of Lemma 1 and Theorems 2–4

We first present the proof of Lemma 1 which is a basis to our results.

Proof of Lemma 1: Except the inequality c(G)/
√|E|/2 ≤ p(G) the statement

was proved in [11,19]. We restate the proof for completeness of exposition. The
inequality p(G) ≤ 2c(G) follows from

p(G) =
∑

v∈V

p(v) ≤
∑

v∈V

∑

e∈δ(v)

c(e) = 2
∑

e∈E

c(e) = 2c(G).

If T is a tree, root it at an arbitrary node r. Then c(T ) ≤ p(T ) since for each
v �= r, p(v) is at least the cost of the parent edge of v.

We now show that c(G) ≤ √|E|/2p(G)) It is sufficient to prove that

∑

xy∈E

min{p(x), p(y)} ≤
√
|E|/2

∑

v∈V

p(v) (5)

for any graph G = (V,E) with nonnegative weights p(v) on the nodes. Suppose
to the contrary that the statement is false, and let G = (V,E) with p be a
counterexample to (5) so that maxv∈V p(v) − minv∈V p(v) is minimal. Let µ =
minv∈V p(v), let U = {v ∈ V : p(v) = µ}, and let EU be the set of edges in E
with at least one endpoint in U . If |EU | ≤

√|E|/2|U | then the statement is also
false for G′ = (V ′, E′) = (V −U,E −EU ) and p′ being the restriction of p to V ′

since
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∑

xy∈E′
min{p′(x), p′(y)} ≥

∑

xy∈E

min{p(x), p(y)} −
√
|E|/2|U |µ >

>
√
|E|/2

∑

v∈V

p(v) −
√
|E|/2|U |µ =

√
|E|/2

∑

v∈V ′
p′(v) >

>
√
|E′|/2

∑

v∈V ′
p′(v).

In particular, this implies a contradiction if U = V . Else, let µ′ = min{p(v) : v ∈
V −U} be the second minimum value of p. Then by setting p(v) ← p(v)+µ′−µ
for every v ∈ U we obtain again a counterexample to (5). This contradicts our
choice of G, p. �

We now prove Theorems 2 and 3. We need the following fundamental state-
ment due to Mader.

Theorem 7 ( [20]). In a k-connected graph G, any cycle in which every edge
is critical contains a node whose degree in G is k.

Here an edge e of a k-connected graph G is critical (w.r.t. k-connectivity) if G−e
is not k-connected.

The following corollary (e.g., see [20]) is used to get a relation between (k−1)-
edge covers and k-connected spanning subgraphs.

Corollary 2. If degJ(v) ≥ k − 1 for every node v of a graph J , and if F is an
inclusion minimal edge set such that J ∪ F is k-connected, then F is a forest.

Proof. If not, then F contains a cycle C of critical edges, but every node of this
cycle is incident to 2 edges of C and to at least k − 1 edges of G, contradicting
Mader’s Theorem. �

Proof of Theorem 3: By the assumption, we can find a subgraph J with
degJ(v) ≥ k − 1 of power at most p(J) ≤ βopt. We reset the costs of edges in J
to zero, and apply an α-approximation algorithm for the Min-Cost k-Connected
Spanning Subgraph problem to compute an (inclusion) minimal edge set F so
that J + F is k-connected. By Corollary 2, F is a forest. Thus p(F ) ≤ 2c(F ) ≤
2αopt, by Lemma 1. Combining, we get the desired statement.

The proof of the other direction is similar. We find a min-cost (k − 1)-edge
cover J in polynomial time, and reset the costs of its edges to zero. Then we use
the ρ-approximation algorithm for MPk-CSS with the new cost function. The
edges with nonzero cost in this new graph form a forest F , by Corollary 2. Then
clearly c(J) is at most the minimum cost of a k-connected spanning subgraph,
and c(F ) is at most 2ρ times the minimum cost of a k-connected spanning
subgraph, by Lemma 1. This gives a (2ρ + 1)-approximation algorithm for the
Min-Cost k-Connected Spanning Subgraph problem. �

We can combine the various existing approximation algorithms for the Min-
Cost k-Connected Spanning Subgraph problem [7, 16, 17] to get better approx-
imation for MPk-CSS. The currently best approximation ratios for the former
are O(ln k · min{√k, n+k

n−k ln k}) [17] and O(ln k) for n ≥ 6k2 [7].
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In particular, we set β = k in Theorem 3 to get a k(1 + o(1))-approximation
for any non-constant k. Using α = O(ln k · min{√k, n+k

n−k ln k}) from [17] gives
the bound in Theorem 2.
Remark: In [16] a (2 + k/n)-approximation was given for k-CS with metric
costs. This does not imply that for metric costs we can set α = 2 + k/n in
Theorem 3. Note that our algorithm first resets the costs of the edges in a k-
edge cover to zero, and thus when applying an algorithm for min-cost k-CS the
triangle inequality property does not hold for the obtained k-CS instance.

To prove Theorem 4, we combine Lemma 1 with the following theorem due
to Cheriyan and Thurimella [6], which is the edge-connectivity counterpart of
Corollary 2.

Theorem 8 ( [6]). If degJ(v) ≥ k for every node v of a graph J , and if F is an
inclusion minimal edge set such that G∪F is k-edge connected, then |F | ≤ n−1.

Proof of Theorem 4: We use the O(log4)-approximation for MPb-EC. Then
we change the cost of these edges to zero and find the minimum cost k-edge con-
nected subgraph using the known 2-approximation algorithms for the minimum
cost k-edge connected subgraph problem [13]. From Lemma 1 and Theorem 8,
the power of this augmentation is at most 2

√
n/2 of the minimum power k-edge

connected subgraph. This gives an O(
√

n)-approximation algorithm. �

4 Proof of Theorem 5

To prove Theorem 5, we will show that approximating MPk-EDP is at least as
hard as approximating the following problem, which is an alternative formula-
tion, of the LabelCover-Max Problem defined in [15].

The MaxRep Problem:
Instance: A bipartite graph H = (A∪B, I), and equitable partitions A of A and
B of B into q sets of same size each.
Objective: Choose A′ ⊆ A and B′ ⊆ B with |A′ ∩ Ai| = |B′ ∩ Bj | = 1 for each
i, j = 1, . . . , q such that the subgraph induced by A′ ∪B′ has maximum number
of edges.

The bipartite graph and the partition of A and B induce a super-graph Γ
in the following way: The vertices in Γ are the sets Ai and Bj . Two sets Ai

and Bj are connected by a (super) edge in Γ if and only if there exist ai ∈ Ai

and bj ∈ Bj which are adjacent in G. For our purposes, it is convenient (and
possible) to assume that the graph Γ is regular. Say that every vertex in Γ has
degree d, and hence, the number of super-edges is h = qd. Raz [23] proved:
Theorem 9. [23] Let I be an instance of any NP-complete problem. For any
0 < ε < 1, there exists a (quasi-polynomial) reduction that maps I to an instance
G of MaxRep with n vertices so that: 1) If I corresponds to a yes instance then
there exists a feasible solution covering all super-edges, and 2) If I corresponds
to a no instance, then every MaxRep feasible solution covers at most h/2log1−ε n

super-edges.
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In the above reduction the size n of the MaxRep instance G is quasi-polynomial in
the size of the NP-complete instance. The following is implied from Theorem 9.

Theorem 10. Unless NP ⊆ DTIME(npolylogn), the MaxRep Problem admits
no 2log1−ε n-approximation algorithm, for any constant ε > 0.

The Reduction. We reduce MaxRep to MPk-EDP. Let H be the bipartite instance
of MaxRep. Form an instance G for MPk-EDP as follows. First we put H into
G and give all the edges of H directions from the Ai vertices to the Bj vertices.
The edges of H are assigned cost n3. Add a source s and a sink t. For each set
Ai (Bi), 1 ≤ i ≤ q, we also add a local source si (a local sink ti). We add d
edge-disjoint paths of length 2 from si, 1 ≤ i ≤ q, into every aj

i ∈ Ai, 1 ≤ j ≤ N ,
and d edge-disjoint paths of length 2 from s to every si. These edges are given
cost 0. Finally, we add d edge-disjoint paths of length 2 from every bj

i ∈ Bi,
1 ≤ i ≤ q, 1 ≤ j ≤ N into ti, and d edge-disjoint paths of length 2 from ti into t.
The first edge in every one of paths from a vertex in Bi to ti gets cost n3 while
the rest of edges get cost 0.

A direct inspection shows that there exists h = dq edge-disjoint paths from
s to t and indeed we pick k = h for the MPk-EDP instance.

Let H be a MaxRep instance resulting from a yes instance of the NP-complete
instance and let G be the resulting MPk-EDP instance.

Lemma 4. The graph G admits a subgraph G′ of power-cost 2qn3 so that in G′

there exist k = h edge-disjoint paths from s to t.

Proof. We select the following edges as a solution F to MPk-EDP. Let ai ∈
Ai, bj ∈ Bj be a MaxRep solution covering all the superedges as guaranteed
in Theorem 9. Add all the ai to bj edges into the solution. Note that the edge
(ai, bj) exists as the chosen representatives cover all the super-edges. Include all
the edges which are on a path from s to ai, 1 ≤ i ≤ q, and all edges which are
on a path from bj , 1 ≤ j ≤ q, to t. Clearly the solution F admits h edge-disjoint
s− t paths. The solution pays n3 per every ai because of the Ai to Bj edges and
n3 per every bj because of the d paths to tj . �

Lemma 5. If G corresponds to a no instance of MaxRep then the cost of any

MPk-EDP solution is at least 0.4qn32
log1−ε n

4 .

Proof. The idea of the proof is to start with a solution for MPk-EDP and use it
to build a MaxRep solution that covers a number of superedges which is related
to the cost of this solution. Let F be the solution to MPk-EDP. Call a vertex v
active (with respect to F ) if at least one edge in F touches v. Let A′

i (respectively,
B′

j) be the collection of active vertices in Ai (respectively, Bj).
We may clearly assume that the outdegree of A′

i and B′
j vertices is nonzero

(vertices that do not obey this can be discarded). The power-cost is thus at least
(
∑

i |A′
i| +

∑
j |B′|j)n3.

Let (
∑

i |A′
i|+

∑
j |B′|j) = 2qρ. The average size of A′

i (respectively, |B′
j |) is

at most 2ρ. Call an Ai sparse if |A′
i| > 8ρ. Similarly, Bj is sparse if |B′

j | > 8ρ.
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Remove from the super-graph Γ all the sparse sets Ai and Bj . Clearly, the
number of sparse Ai sets is no larger than q/4 and the same holds for Bj . Now
we update the number of s− t paths discarding paths of sparse sets. The loss of
paths incurred by the removal of a sparse Ai or sparse Bj is at most d. Hence,
the removal of sparse Ai and Bj sets incurs a loss of at most 2q/4d = h/2 paths.
Hence, at least h/2 s − t edge-disjoint paths still exist after this update.

We now dilute the path collections so that at most one path remains between
every pair of sets Ai, Bj . Since the remaining sets Ai and Bj are not sparse, the
number of active vertices in each set is bounded by 8ρ. Hence, the total number
of paths between every pair of sets Ai and Bj is at most (8ρ)2. Therefore, the
dilution results in a total number of paths of at least h

128ρ2 . Let F ′ be the subset
of

⋃
A′

i ∪
⋃

B′
j restricted to the non-sparse Ai, Bj .

We now create a feasible MaxRep solution by drawing a single vertex in ev-
ery non-sparse A′

i and B′
i with all elements being equally likely to be chosen.

Let F ′′ be the resulting set of unique representatives; Clearly F ′′ is a feasible
MaxRep solution. Observe that a super-edge covered by F ′ has probability ex-
actly 1/64ρ2 to be covered by F ′′. The expected number of superedges covered
by F ′′ is h

8192ρ4 . This implies the existence of a MaxRep solution that covers this

many superedges. By Theorem 9, 8192ρ4 ≥ 2log1−ε n. Finally, we note that the
probabilistic construction of F ′′ can be easily de-randomized using the method
of conditional expectation and thus the claim follows. �

By Lemma 4 and 5, it is hard to approximate MPk-EDP within 2
log1−ε n

4 /10.
Since ε can be chosen to be any arbitrary constant, the hardness result follows.
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