
Assignment Problems in Rental Markets∗

David Abraham† Ning Chen‡ Vijay Kumar§ Vahab S. Mirrokni¶

Abstract

Motivated by the dynamics of the ever-popular online movie rental business, we study a range of as-
signment problems in rental markets. The assignment problems associated with rental markets possess a
rich mathematical structure and are closely related to many well-studied one-sided matching problems. We
formalize and characterize the assignment problems in rental markets in terms of one-sided matching prob-
lems, and consider several solution concepts for these problems. In order to evaluate and compare these
solution concepts (and the corresponding algorithms), we define some “value” functions to capture our ob-
jectives, which include fairness, efficiency and social welfare. Then, we bound the value of the output of
these algorithms in terms of the chosen value functions.

We also consider models of rental markets corresponding to static, online, and dynamic customer valua-
tions. We provide several constant-factor approximation algorithms for the assignment problem, as well as
hardness of approximation results for the different models. Finally, we describe some experiments with a
discrete event simulator compare the various algorithms in a practical setting, and present some interesting
experimental results.

1 Introduction

Online movie rental services such as Blockbuster.com, Netflix.com and Amazon.co.uk are perhaps the most
familiar instances of rental markets in the Internet. The primary function of centralized rental markets such
as these is to repeatedly allocate a rental inventory in accordance with customer demand at successive time
instances. Customers return assigned items after some time steps and a central authority reassigns the items to
other customers. The basic model behind these markets involves (partial) customer preferences over items, and
the rental service aims to satisfy these preferences within the constraints of available inventory. Other objectives
include trying to maximize overall resource (inventory) utilization and limiting (perceived) unfairness in the
allocation process.

Given the collection of competing objectives, resource constraints and challenging business characteristics
(popularity of movies tends to be highly non-uniform and extremely short-lived; there is a deep catalog with
very sparse demand in the tail), it is natural that the allocation process involves complex decisions. As we
shall see, specific considerations involved in these tradeoffs are to some extent captured by familiar matching
problems from mathematical literature. Thus several natural questions of the following form arise: how well
does maximization of one objective (such as inventory utilization) serve another (such as fairness)? How can
one objective be generalized to include another? And when one objective (such as fairness or popularity) does
not have a unique maximum, how do the different maxima compare under another objective? In this paper, we
consider a range of such issues, identify several interesting questions, and (partly) answer many of them.

Formally speaking, a rental service repeatedly computes a matching between the two sides of the market
(i.e., customers and items), given the preference lists of one (and only one) side of the market. This type of
matching markets are called one-sided matching markets as only one side of the market has preference over the

∗This work was done when the authors were visiting Amazon.com.
†Carnegie Mellon University. Email: dabraham@cs.cmu.edu.
‡University of Washington. Email: ning@cs.washington.edu.
§Amazon.com. Email: vijayk@amazon.com.
¶Microsoft Research. Email: mirrokni@theory.csail.mit.edu.

1

other side. This is contrast to two-sided matching markets in which both sides of the market have preferences
over the other side.

The preferences of customers are often ordinal in that they only explain the relative ranking of the items
for individual customers. As noted above, optimality in allocation is not clearly defined as two matchings
only based on the ordinal preferences of customers may not be comparable. This nuance underlies several
notions of one-sided matching objectives studied in recent literature, such as pareto-optimal matchings [1], fair
matchings [15], rank-maximal matchings [11], and so forth. In this context, we examine different measures that
may be used to choose between non-comparable matchings and analyze different one-sided matching algorithms
in terms of these measures.

Two leading criteria to measure the allocation performance of the rental service are that of social welfare
and the fairness of allocation. In this following, we consider different algorithms for a single one-sided matching
seeking a reasonable social welfare and fairness and compare the value of the output of these algorithms. For
this purpose we require the measures of the value of the allocations, which must be defined in respect to the
preference lists of customers to capture the social welfare and the fairness of the output. Under different
measurese, we analyze the value of the output of different one-sided matchings for a single assignment; and
then extend the results to repeated matchings for the rental market problem. Our metric to measure these
matching algorithms is similar to that of the competitive analysis. That is, we study the ratio of the value of
the matchings resulting from the one-sided matching algorithms over the value of the optimal matching.

1.1 One-Sided Matching Markets

Consider the following classical one-sided matching problem: we are given a set A of m customers and a set B
of n items with one copy1 for each j ∈ B. Each customer i ∈ A has a preference list Li = (b1

i , . . . , b
`i
i) over

different items, where `i = |Li| and bj
i ∈ B for all 1 ≤ j ≤ `i. In a matching, items are assigned to customers

so that each customer i gets at most one item and each item j is assigned to at most one customer. Since
the vertices of one (and only one) side of the corresponding bipartite graph has a preference list, we call the
matching in this setting one-sided matching.

Roughly speaking, our goal is to assign the customers to items which are among the top of their lists. More
formally, let us consider associating a value v(i, j) for assigning item j to customer i, and let our general goal
be to find one-sided matchings to maximize the total value of the assignments in terms of the given valuations.
We denote such valuations on the items to customers by ~v.

This valuation function, however, should have some desired properties. The first natural property is that
the function should be non-decreasing, i.e., v(i, b1

i) ≥ v(i, b2
i) ≥ · · · ≥ v(i, b`i

i) > 0 and v(i, j) = 0 for all other
items j that are not on the list Li, where equality only reflects ties among items. Secondly, the customers tend
to have stronger preference over the top choices in their preference list. We can model this fact by considering
the concave valuation functions, i.e., v(i, bj

i)− v(i, bj+1
i) ≥ v(i, bj+1

i)− v(i, bj+2
i), for 1 ≤ j < `i − 1. Moreover,

in the valuation function, we would not want to “favor” any customer too much. For simplicity, let us say we
would like to give the same value to the first choices of all customers and the same value to the second choices
of all customers and so on. We call such functions satisfying the above conditions by the universal ranking
valuation functions.

In particular, we are interested in the following special universal ranking valuation functions: for each
customer i, the value of her jth-ranked item is (n − j + 1)k (i.e., v(i, bj

i) = (n − j + 1)k), for all 1 ≤ i ≤ n,
1 ≤ j ≤ `i, and some fixed constant k ≥ 0. We denote this valuation vector by ~xk. Note that when k = 0, this
valuation function models the cardinality of the matching (i.e., v(i, bj

i) = 1).
In this paper, we consider and analyze several one-sided matching frameworks that are listed below:

Maximum Weighted Matching. As described above, in the maximum weighted matching, we associate a
valuation vector ~v to items and customers and maximize the total value of the one-sided matching. The
maximum weighted matching associated with valuation vector ~v is denoted by MaxWeightMatch(~v).

Rank-Maximal Matching. The profile of a one-sided matching M is a vector, where the jth element of the
profile is the number of customers allocated to their jth-ranked item by M . M is rank-maximal if it has

1Note that all our results in the paper apply to the multiple copies case.

2

the lexicographically maximum profile. The rank-maximal matching M is denoted by RankMaxMatch.
This solution concept for one-sided matching has been suggested by Irving [12] and later explored by
Irving et al. [11].

Weighted Rank-Maximal Matching. Given a valuation vector ~v, the weighted profile of a one-sided match-
ing M for ~v is a vector, where the jth element of the profile is the value of the jth largest value among
the values of the pairs of M . M is weighted rank-maximal for vector ~v if it has the lexicographically
maximum weighted profile for the value vector ~v. A weighted rank-maximal matching is denoted by
WeightRankMaxMatch.

Fair Matching. A fair matching has the fewest number of unmatched customers (i.e., it has maximum-
cardinality), and subject to this, matches the fewest number of customers to their nth-ranked item,
and subject to this, matches the fewest number of customers to their (n − 1)th-ranked item, and so on.
(This definition can be formalized in terms of lexicographically-minimum reverse profiles, where we pad
each customer’s preference list with dummy items). The fair matching is denoted by FairMatch. Mehlhorn
and Michail [15] considered this solution concept for the one-sided matching problems.

Order-Based Matching. Consider an arbitrary ordering π : A → {1, . . . , m} of customers, the order-based
matching algorithm for the ordering π goes over the list of customers according to π and for each customer
i, it assigns the first available item on i’s preference list to i. This algorithm is very simple and scalable to
implement. Moreover, in order to achieve different goals in the assignment, we could change the ordering
of customers. For example, in order to favor the new customers or the more profitable customers, we can
put them at the beginning of the ordering. A matching resulted from the order-based matching algorithm
for the ordering π is denoted by OrderMatch(π).

Note that the ordering of customers may differ at different time steps and may depend on the allocations
of the previous time steps. For example, in order to achieve some fairness properties, we can favor the
customers who did not get their first choices recently in the ordering and put them at the beginning of
the ordering.

Stable Matching. Stable matchings are the well-known solution concepts for two-sided matching problems.
In a two-sided matching problem, both sides have preference lists over the elements of the other side. In
order to extend our setting from a one-sided matching to a two-sided matching problem, we need to define
a preference list over customers for each item. We define the preference list for an item j by first listing
the customers who have item j as their first choice in an arbitrary order, then listing all customers who
have item j as their second choice, and so on. By defining these preference lists for items, we can apply
the stable matching algorithm on the two-sided matching instance and output the resulting assignment.
This matching is denoted by StableMatch.

The above solutions are the main algorithms that we study in this paper.

1.2 The Rental Market Problem

Rental markets seek to compute one-sided matching, of course, but they also have a time dimension. Roughly
speaking, rental markets are frameworks for repeated one-sided matching. More formally, let us say that we are
given a set B of n items and a set A of m customers with preference lists Li over items. In the rental market
problem, we need to assign a matching of items to customers at each discrete time step t = 1, 2, . . . , T , where
T is the common deadline. We assume that customers use the items for one time step and items can be reused
after that. Besides the requirements that at each time, one customer can be assigned at most one item and one
item can be assigned to at most one customer, the other requirement in the rental market problem is that one
item can be assigned to one customer at most once.

We associate a value vt(i, j) for assigning item j to customer i at time step t. Our goal in the rental market
problem is to find a set of matchings for all time steps to maximize the total value. We consider three different
types of valuations: the static, online and the dynamic valuations. Roughly speaking, in the static valuation
model, the value vt(i, j) is determined at the beginning t = 1, whereas in the dynamic valuation model, vt(i, j)

3

directly depends on the position of j on i’s preference list at time step t (i.e., it may change according to the
assignments of previous steps). On the other hand, in the online valuation model, customers can update their
preference lists (add new items or remove available items). We will elaborate the details of these models in
Section 3.

1.3 Our Contribution

In this paper, we formalize the rental market problem as a repeated one-sided matching problem. We propose
some value functions to measure the performance of the assignments in the rental market problem to capture
the fairness and the social value of the output of different algorithms. We analyze several one-sided matching
algorithms and give (almost) tight bounds on the performance in terms of those value functions for a single
one-sided matching problem. These bounds are summarized in Table 1.

Then, we formalize the rental market in three models: The static valuation setting, online valuation setting
and the dynamic valuation setting. In the static valuation setting, we show that there exists a 2-approximation
algorithm by a reduction from the problem to the weighted 3-dimensional matching problem. As a hardness
result, we prove the APX-hardness of the rental market problem. For the online valuation model, we derive
a 2-competitive online algorithm to maximize the total value of the assignments. For the dynamic valuation
model, we observe that the problems are similar to general variants of the job shop scheduling problems. As
a result, we get a constant-factor approximation for the problem of minimizing the number of time steps to
satisfy all the demand where at each step, we are allowed to assign one of the few top choices of each customer
to her. We also give a hardness result of approximation for this model.

Finally, we give a description of our discrete event simulator for measuring the performance of most of these
algorithms on a sample data (and will report some practical evaluations of our algorithms). We conclude the
paper with some directions and open problems in the last section.

1.4 Related Work

As mentioned earlier, stable matchings are extensively studied as a solution concept for two-sided markets in
which both sides of the market have preferences over the other side [5, 7]. For one-sided matchings, Irving [12]
introduced the concept of the rank maximal matchings and observed that they can be found by computing
the maximum weighted matching in an edge-weighted bipartite graph where the edge weights are exponentially
decreasing with respect to the preferences. Irving et al. [11] derived an algorithm with the running time
O(nm2

√
m + n) for this problem. Mehlhorn and Michail [15] studied fair matchings and gave some efficient

algorithms to find them. To the best of our knowledge, none of the above work analyzed the value of these
one-sided matching algorithms for their worst-case performance. The only related paper in this regard is by
Abraham et al. [1] in which the authors studied the structure of pareto-optimal solutions and pareto-optimality
of some of the one-sided matching algorithms.

1.5 Notations

Recall that for a given valuation vector ~v, MaxWeightMatch(~v) denotes the one-sided matching with the max-
imum value. If the value of all items in the preference list is one, i.e., v(i, bj

i) = 1 for all 1 ≤ i ≤ n and
1 ≤ j ≤ `i, the maximum-value one-sided matching is indeed the maximum cardinality matching and denoted
by MaxCardMatch = MaxWeightMatch(~1). In addition, the value of a one-sided matching M for the valuation
vector ~v is denoted by Val(M,~v), and the cardinality of a one-sided matching M is denoted by Card(M).

2 Single Matching Algorithms

To understand the performance of different one-sided matching algorithms in the rental market problem, we
need to define some universal objective functions to evaluate these matching algorithms. In particular, we
evaluate the performance of a one-sided matching in terms of the value function over the pairs of customers and
items. As discussed in the Introduction, we are interested in the special universal ranking valuation functions

4

~xk, for some fixed constant k ≥ 0, where for each customer i, the value of its jth-ranked item is (n − j + 1)k

(i.e., v(i, bj
i) = (n− j + 1)k), for all 1 ≤ i ≤ n and 1 ≤ j ≤ `i.

In this section, we prove several bounds on the ratio of the value of our proposed algorithms by the worst-case
analysis. We summarize the results of this section in Table 1.

Approximation factor

Card Val(~x) Val(~x4) Val(~xk)
Pareto-optimal Running time

MaxCardMatch 1∗ ε∗ ε∗ ε∗ Exist O(e
√

v) [9]

MaxWeightMatch(~x) 0.5, 2
3

1∗ 0.2, 1 - Yes O(e
√

v log v) [4]

MaxWeightMatch(~x4) 0.5, 4
7

n+1
4n

, 1 1∗ - Yes O(e
√

v log v) [4]

MaxWeightMatch(~xk′) 0.5∗ n+1
4n

, 1 0.1, 1 - Yes O(ek′
√

v log v) [15]

RankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

WeightRankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

FairMatch 1∗ n+1
2n

∗
- ε∗ Yes O(e

√
v log v) [15]

OrderMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Exist O(e + v)

StableMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(e + v) [5]

Notes: (i) The star symbol (∗) implies that the ratio is (almost) tight.
(ii) Two numbers a, b implies the best known lower and upper bound.
(iii) “ε” means that the ratio can be arbitrarily close to zero.
(iv) In the running time, v = max{m, n} and e =

Pm
i=1 `i.

Table 1: The performance of one-sided matching algorithms.

2.1 Approximation Factor: Lower and Upper Bounds

Due to space limit, we move the discussions of the tight bounds for cardinality of the maximum weighted
matching, order-based matching, stable matching, and (weighted) rank-maximal matching to the Appendix. In
the following discussions, we consider the bounds for the fair and maximum weighted matching. To prove our
bounds, We first establish the following two lemmas.

Lemma 1 Let M be either a FairMatch or a MaxWeightMatch w.r.t valuation function ~x, and |M | = `. For
any w, where n− ` + 1 ≤ w ≤ n, we have

|{(ai, bi) ∈ M | v(ai, bi) ≤ w}| ≤ w − n + `.

Basically, the lemma says that in the FairMatch or MaxWeightMatch M w.r.t valuation function ~x, there is
at most one edge with value smaller than or equal to n − ` + 1, at most two edges with value smaller than or
equal to n− ` + 2, and so on.

For any constant k ≥ 1, we can show similarly the following result.

Lemma 2 For any constant k ≥ 1, let M be a MaxWeightMatch(~xk) and |M | = `. For any w, where n−`+1 ≤
w ≤ n, we have ∣∣{(ai, bi) ∈ M | v(ai, bi) ≤ wk}

∣∣ ≤ w − n + `.

Note that any FairMatch first try to minimize the number of unmatched customers, thus it’s essentially a
MaxCardMatch. To compare the FairMatch with MaxWeightMatch(~xk), we will first give an example to show
the upper bound for any k ≥ 1, and then study the lower bound for the case of k = 1.

5

Assume there are n customers (a1, . . . , an) and n items (b1, . . . , bn). Each customer ai prefers items
bi, bi+1, . . . , bn on her list. For i = 1, . . . , n− 1, customer ai puts bi the last choice and bi+1 the first choice on
her list, respectively. All other items on the list can be ranked arbitrarily. Thus, {(a1, b1), . . . , (an, bn)} is a
FairMatch with total value 1k +2k + · · ·+nk. The MaxWeightMatch is {(a1, b2), . . . , (an−1, bn)} with total value
(n − 1)nk. Note that when k = 1, the ratio is n+1

2n−2 ; when k = 4, the ratio approaches to 1/5 when n goes to
infinity; and when n and k are sufficiently large, the ratio can be arbitrarily close to zero.

Now let’s consider the relation between the FairMatch and MaxWeightMatch(~x). Assume M is a MaxWeightMatch(~x)
and |M | = `. Note that Val(M) ≤ `n. Let M∗ be a FairMatch. Since the FairMatch is also a MaxCardMatch, we
know |M∗| ≥ `. Due to Lemma 1, we know Val(M∗) ≥ ∑n

w=n−`+1 w. Thus,

Val(M∗)
Val(M)

≥ (n− ` + 1) + · · ·+ n

` · n
=

2n− ` + 1
2n

≥ n + 1
2n

We conclude the above analysis as the following proposition.

Proposition 1 For the universal ranking valuation function ~x, we have

Val(FairMatch, ~x) ≥ n + 1
2n

· Val(MaxWeightMatch(~x))

Finally, we give some bounds for the value of the maximum weighted matching algorithms with valua-
tion functions ~x and ~x4. We first consider the valuation function ~x. Let M be a MaxWeightMatch(~x) where
|M | = `. Due to Lemma 1, we know that Val

(
M, ~x4

)
≥ ∑n

w=n−`+1 w4. On the other hand, consider the

MaxWeightMatch(~x4) M∗, note that Val(M∗, ~x) ≤ Val(M,~x) ≤ `n, which implies that Val
(
M∗, ~x4

)
≤ `n4.

Thus,

Val
(
M, ~x4

)

Val
(
M∗, ~x4

) ≥
∑n

w=n−`+1 w4

` · n4

≥
∑n

w=1 w4

n · n4

=
1/30 · n(n + 1)(2n + 1)(3n2 + 3n− 1)

n · n4

≥ 1/5

Proposition 2 Val
(
MaxWeightMatch(~x), ~x4

)
≥ 1/5 · Val

(
MaxWeightMatch(~x4), ~x4

)
.

On the other hand, Let M be a MaxWeightMatch(~xk) where |M | = `, for any constant k > 1. Due to
Lemma 2, we know that Val

(
M, ~x4

)
≥ ∑n

w=n−`+1 w4. Consider the MaxWeightMatch(~x4) M∗, it is easy to see

that |M∗| ≤ 2|M | = 2`, which implies that Val
(
M∗, ~x4

)
≤ 2`n4. Thus,

Val
(
M, ~x4

)

Val
(
M∗, ~x4

) ≥
∑n

w=n−`+1 w4

2` · n4

≥ 1/10

Proposition 3 Val
(
MaxWeightMatch(~xk), ~x4

)
≥ 0.1 · Val

(
MaxWeightMatch(~x4), ~x4

)
, for any k > 1.

6

Consider another case: For any constant k ≥ 1, let M∗ be a MaxWeightMatch(~xk) where |M∗| = `. Due
to Lemma 2, we know Val(M∗, ~x) ≥ ∑n

w=n−`+1 w. Let M be a MaxWeightMatch(~x). Again, note that |M | ≤
2|M∗| = 2`, thus, Val(M,~x) ≤ 2`n. Therefore,

Val (M∗, ~x)
Val (M,~x)

≥
∑n

w=n−`+1 w

2` · n
=

`(2n− ` + 1)
4` · n

≥ n + 1
4n

Proposition 4 For any k ≥ 1,

Val
(
MaxWeightMatch(~xk), ~x

)
≥ n + 1

4n
· Val (MaxWeightMatch(~x), ~x)

2.2 Pareto-Optimality

We say an allocation of items to customers is Pareto-optimal if there is no other allocation with some customers
better and no one worse.

Proposition 5 There is a MaxCardMatch that is Pareto-optimal.

Proposition 6 For any universal ranking valuation function ~v, MaxWeightMatch(~v), RankMaxMatch,
WeightRankMaxMatch, FairMatch, OrderMatch, and StableMatch are Pareto-optimal.

Note that for the OrderMatch with ties, we can show similar to Proposition 5 that there exists a Pareto-
optimal solution, but in general, the OrderMatch is not Pareto-optimal. However, if it is not allowed to have
ties, the OrderMatch guarantees Pareto-optimal.

3 The Rental Market Problem

In this section, we study the rental market problem with a focus on static, online, and dynamic valuations,
respectively.

3.1 Static Valuation Model

In the following discussion, we study a static valuation model to evaluate the performance of the rental market
problem. In the static valuations model, at each time t, t = 1, . . . , T , where T is the deadline that customers
can get the items, there is a valuation vt(i, j), which is determined at the beginning, associated with the pair
(i, j), for any (i, j) ∈ A×B, representing the valuation of the customer i ∈ A for item j ∈ B at time step t. Our
goal is to select one-sided matchings Mt for each time t that maximizes

∑T
t=1

∑
e∈Mt

vt(e), given the condition
that every pair is selected at most once, that is, each item can be assigned to each customer at most once. We
denote the rental market problem in the static valuation model by StaticRentMark.

We reduce StaticRentMark problem with arbitrary valuation functions to the weighted 3-dimensional match-
ing problem (W3DM). This implies a local search 2-approximation algorithm for this problem. In an instance
of W3DM, given a subset D of triples in set X×Y ×Z where X, Y , and Z are disjoint sets, and a weight we for
each triple of D, we need to find a set of triples C ⊆ D with the maximum weight such that no two elements
of C agree in any coordinate. W3DM is APX-complete [13] and a local search two-approximation algorithm is
known for it [2].

7

Theorem 1 For any static valuation function ~v, there exists a 2-approximation algorithm for the StaticRentMark
problem.
Proof. Given an instance S(A,B; T,~v) of the StaticRentMark problem, where T is the deadline time and ~v
is the valuation function, we construct an instance G(S) of W3DM as follows: Let [T] = {1, . . . , T}. Define
X = (A × B), Y = (A × [T]) and Z = (B × [T]). For any triple e = ((i, j), (i′, t), (j′, t′)) ∈ X × Y × Z, define
the weight

we =
{

vt(i, j) if i = i′, j = j′, t = t′

0 otherwise

Now, it is easy to check that there exists a set of T one-sided matchings as the solution to the instance S
with the total value w, if and only if, there exists a weighted 3-dimensional matching of weight w in the instance
G(S). As a result, we can use the local search two-approximation algorithm of Arkin and Hassin [2] to achieve
a two-approximation algorithm for StaticRentMark with any valuation function. ¤

Next, we complement this result by showing that StaticRentMark with arbitrary valuation functions is APX-
Hard.

Theorem 2 The StaticRentMark problem is APX-hard.

3.2 Online Valuation Model

The 2-approximation algorithm for StaticRentMark above is based on a local search algorithm and does not
provide an online algorithm. In this section, we consider a online valuation model in which customers can
arbitrarily update their preference lists (add new items or remove available items2) for every time step, and
at time t, we only know the preference lists and the corresponding valuations till this time. We denote this
problem by OnlineRentMark.

Similar to the above models, our goal in OnlineRentMark is to assign items to customers at each time step
to maximize the total value of assignments. In order to evaluate the performance of the online the algorithm,
we follow the approach of the competitive analysis that compares the efficiency of the solution with a global
optimum (assuming the knowledge of the future in advance).

Before studying the online algorithm for OnlineRentMark, we need to specify the valuation functions. In
general, the valuations of customers over items decrease as time passes by. Therefore, it is reasonable to assume
non-increasing valuation functions, i.e., vt′(i, j) ≥ vt(i, j), for any 1 ≤ t′ < t ≤ T , when item j is on customer
i’s list at both time t′ and t.

A natural greedy strategy is that at each time t, we compute the current maximum weighted matching in
terms of the available pairs and valuations at time t, and allocate the items to customers according to that
matching. As the following theorem shows, this greedy algorithm has a good competitive ratio.

Theorem 3 For any non-increasing valuation function ~v, the above greedy algorithm gives a 2-competitive
algorithm to the OnlineRentMark problem.
Proof. Let OPTt be the set of pairs selected by the optimal solution at time step t, and ALGt be the set of
pairs selected by the greedy online algorithm at time t. Let

OPT ∗ =
T∑

t=1

∑

e∈OPTt

vt(e)

be the total value of the optimal offline solution, and

ALG∗ =
T∑

t=1

∑

e∈ALGt

vt(e)

2For a more general setting in which users can change their preferences arbitrarily, we cannot hope to get any bounded competitive
ratio.

8

be the total value of the greedy online algorithm. Let

Xt = OPTt ∩
(

t⋃

i=1

ALGi

)
.

That is, Xt is the set of selected pairs in the optimal solution at time t that appear in the greedy online algorithm
no later than time step t. Let Yt = OPTt −Xt.

For any e = (i, j) ∈ Xt, assume e ∈ ALGt′ , where t′ ∈ {1, . . . , t}. Note that item j appears on customer i’s
list at both time t′ and t. Due to the non-increasing property, we have vt(e) ≤ vt′(e). Therefore,

T∑
t=1

∑

e∈Xt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

For the set Yt, note that all pairs in Yt are available in the greedy online algorithm at time t. Thus, Yt is a
feasible candidate set of the greedy algorithm. Due to the maximum weighted matching strategy, we have

∑

e∈Yt

vt(e) ≤
∑

e∈ALGt

vt(e),

for any t. Thus, we have
T∑

t=1

∑

e∈Yt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

Therefore,

OPT ∗ =
T∑

t=1

∑

e∈Xt

vt(e) +
T∑

t=1

∑

e∈Yt

vt(e) ≤ 2ALG∗,

which completes the proof of the theorem. ¤

Another advantage of the above greedy online algorithm is that it can be easily modified by changing the
one-sided matching algorithm at each time step to get another competitive algorithm which may satisfy some
extra desirable properties. We can combine the proofs of Section 2 and the above proof to bound the efficiency
of the assignments resulting from using one of the aforementioned one-sided matching algorithms at each time
step. For example, we could run a stable matching algorithm to find an assignment at each time step. The
resulting algorithm is thus a 1

4 -competitive online algorithm for any non-increasing universal ranking valuation
function.

3.3 Dynamic Valuation Model

A drawback of StaticRentMark and OnlineRentMark is that it ignores the effect of allocations in the previous time
steps on the valuations of later time steps (OnlineRentMark essentially reflects the perspectives and changes of
customers, but not allocations). We illustrate this by the following example. Let the preference list of customer
i be (b1, b2, b3). If we assign items b1, b2, and b3 to customer i at the first three time steps, respectively, we
have assigned the first choice of i to her every time step. In other words, the value of assigning b2 to i at time
step 2 for customer i is larger if item b1 is assigned to i at time step 1. To capture this aspect, we formalize
the rental market problem with dynamic valuations, denoted by DynamicRentMark, as follows: Let rt(i, j) be
the jth-ranked item on customer i’s preference list at time t. For every time step t, t = 1, . . . , T , the value of
assigning rt(i, j) to customer i at time t is g(i, j).

The main difference between DynamicRentMark and the other two models is that the value of assigning an
item in DynamicRentMark only depends on the position of the item on the preference list of the customer at
the time of the assignment (that is, rt(i, j) is a dynamic function in terms of the previous allocation), but in

9

StaticRentMark and OnlineRentMark, the value depends on the time step of the assignment and not directly on
the position of the item at the time of the assignment3.

First, we observe that a special case of the DynamicRentMark problem is the job-shop scheduling problem
with unit-length jobs on parallel machines (JobShopSch) [14, 17, 6, 18]. In the JobShopSch problem, we have
a set of m jobs and n machines. Each machine can run at most one job at a time. Each job i consists of
ni operations oi

j . Each operation oj
i has a type tji and can only be scheduled on machine with tji . We need

to schedule the operations of each job in the order (o1
i , o

2
i , . . . , o

ni
i). There are two variations of this problem:

In the minimization variant (MinJobShopSch [14]), we need to schedule all the operations of all jobs in the
minimum number of time steps, that is we need to minimize the makespan of the schedule. In the maximization
variant (MaxJobShopSch), we want to maximize the number (or the total value) of the operations that are
scheduled before a deadline T . Constant-factor approximation algorithms are known for MinJobShopSch [14],
but no constant-factor approximation algorithm is known for MaxJobShopSch.

JobShopSch is a special case of DynamicRentMark in which g(i, 1) = 1 and g(i, j) = −M for any j > 1
and sufficiently large value M . Each machine corresponds to an item in DynamicRentMark. Jobs in JobShopSch
correspond to customers in DynamicRentMark and their operations correspond to the preference list of customers.
As a result, for this value function, the known results for MinJobShopSch give a good approximation algorithm
for the minimization version of DynamicRentMark. Moreover, designing a constant-factor approximation for the
maximization version of DynamicRentMark will solve the open problem of approximating MaxJobShopSch.

Here, we formalize a more general value function and prove similar results for the DynamicRentMark problem.
Consider the following dynamic value function: Given any constant k ≥ 1, let g(i, j) = 1 for any j ≤ k and
g(i, j) = −M for any j > k and a sufficiently large value M . In other words, at each step, we can assign only
one of the first k choices of any customer to her. Our goal is to minimize the number of time steps for assigning
all the items to customers (with the restriction of assigning only the first k choices). We call this problem
MinDynamicRentMark(k). The MinJobShopSch problem corresponds to MinDynamicRentMark(1). We observe
that the constant-factor approximation for MinJobShopSch can be used to give a constant-factor approximation
for MinDynamicRentMark(k) for any k ≥ 1.

Corollary 1 For any constant k ≥ 1, there exists a polynomial-time constant-factor approximation algorithm
for MinDynamicRentMark(k) .

In the following, we give a hardness result for MinDynamicRentMark(2).

Theorem 4 It is NP-hard to approximate the MinDynamicRentMark(2) problem within a factor better than 1.2.

4 Practical Evaluation

In this section, we describe our discrete event simulator and report the performance of different algorithms.

4.1 Discrete Event Simulator

DVD rental businesses are more complicated than the theoretical models we have analyzed here. For example,
customers typically have a choice of subscription plans, which determine, say, how many DVDs they can borrow
at once and in a given month. These plans have a big influence on the DVD return times - i.e. the time between
when a DVD is borrowed and returned. This complicates matching decisions: should we allocate a DVD to a
customer today, or wait until tomorrow when we may be able to give them a better DVD?

In our theoretical models, there is a fixed collection of DVDs available for rental. However, rental businesses
have control over their inventory levels: if there aren’t enough DVDs of a particular title, more can be purchased.
Of course, with this control comes the problem of determining optimum inventory levels, which to some degree
involves trading-off between customer satisfaction and financial sustainability. Inventory levels must also take

3A more general model is that of the combination of OnlineRentMark and DynamicRentMark, where the value of assigning at
item only depends on its current position on the list and customers can update their preference lists. We do not study this model
in this paper.

10

into account return times. Customers with slower return times may keep a high-demand DVD for several days
beyond watching it. Knowing this, additional copies of the DVD must be bought, even though only a fraction
of the DVDs are actively being watched on a given day.

These are just some of the complications dealt with by a real-world DVD Rental business. We cannot hope to
fully capture the underlying model and analyze it theoretically. Instead, we have built a discrete event simulator
to see the effects of various subscription plans, matching algorithms, inventory planning strategies and so on.
The simulator can be seeded by real-world data, including actual customer preference lists, distributions of
return times and forecasts of demand. This simulator is used by the DVD Rental business unit at Amazon.com.

4.2 Performance of Different Algorithms

The following table contains some sample results from our simulator. We constructed a small instance from
real-world data containing 2000 customers (with existing rental histories and preference lists), 150 DVD titles
(5000 DVDs in total) and two types of subscription plans (one with a maximum of 4 DVDs per month, and at
most 2 borrowed at any one time; the other with unlimited DVDs per month, and at most 3 borrowed at any
one time). Using forecast demand data, we then ran the simulator for a (virtual) three-month period to test
the different matching algorithms.

The three objective functions are Val(~x), Val(~x4) and the total number of skips. A skip occurs for each
higher-ranked DVD a customer misses out on when we perform a matching. If an eligible customer receives no
DVD, a skip is recorded for each DVD on his/her preference list. We report this value for different matching
algorithms as an alternative measure to compare the results. Note that in Table 1, we report the worst case
analysis for a single matching, but in Table 2, we report the total value of matchings for several time steps. As
expected from the theoretical results in Table 1, the total value for different algorithms are close to each other.

Total Skips Val(~x) Val(~x4)

MaxWeightMatch(~x) 12,522 1,137,456 3.7921e+012

MaxWeightMatch(~x4) 12,962 1,137,555 3.7963e+012

RankMaxMatch 15,802 1,139,654 3.8078 e+012

FairMatch 12,316 1,135,668 3.7861 e+012

OrderMatch 17,059 1,141,082 3.8148 e+012

StableMatch 25,788 1,139,025 3.8126 e+012

Table 2: Simulator Results

Although these objective functions capture the social welfare, they do not reveal the utility variability
amongst the customers. Figure 1 shows the number of skips experienced by the 50 customers with the most
number of skips. It is of interest to note that fair matching is substantially better for these customers. This is
achieved with very little loss in utility w.r.t. Val(~x) and Val(~x4).

5 Conclusions

In this paper, we studied different algorithms for the rental market problem, defined universal measures to
compare these algorithms, and analyzed them theoretically and practically. An open problem of this paper is
to design a constant-factor approximation algorithm for the maximization version of DynamicRentMark. Such a
constant-factor approximation algorithm also gives a constant-factor approximation for MaxJobShopSch.

Designing algorithms with extra fairness properties is an interesting subject of study. For example, we would
like to minimize the maximum number of skips that any customer observes. Dealing with strategic agents is
another interesting topic. This can be done by proving that for random preference lists, the probability that a
customer has incentive to lie tends to zero as the number of customers approaches to ∞.

11

Figure 1: The worst customer experience in each scenario

References

[1] D. Abraham, K. Cechlarov, D. F. Manlove and K. Mehlhorn. Pareto Optimality in House-Allocation Prob-
lems. ISAAC 2004, 3-15.

[2] E. M. Arkin and R. Hassin, On Local Search for Weighted Packing Problems. Math. Oper. Res., V.10(3),
640-648, 1998.

[3] D. Avis. A Survey of Heuristics for the Weighted Matching Problem. Networks, V.13, 475C493, 1983.

[4] H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems. SIAM Journal on Com-
puting, 18(5), 1013-1036, 1989

[5] D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage. American Mathematical
Monthly, V.69, 9-15, 1962.

[6] L. Goldberg, M. Paterson, A. Srinivasan and E. Sweedyk. Better Approximation Guarantees for Job-Shop
Scheduling. SODA 1997, 599-608.

[7] D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989.

[8] Holyer. The NP-Completeness of Some Edge Partitioning Problems. SIAM journal of Computing, V.10(3),
713-717, 1981.

[9] J. E. Hopcroft and R. M. Karp. An n5/2 Algorithm for Maximum Matching in Bipartite Graphs. SIAM J.
Computing, V.4, 225-231, 1973.

[10] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Cycle Cover with Short Cycles. STACS 2005, 641-653.

[11] R. W. Irving, T. Kavitha, K. Mehlhorn, D. Michail and K. Paluch. Rank-Maximal Matchings. SODA 2004,
68-75.

[12] R. W. Irving. Greedy Matchings. Technical Report TR-2003-136, University of Glasgow, 2003.

[13] V. Kann. Maximum Bounded 3-Dimensional Matching is MAX SNP-Complete. Inform. Process. Lett.,
V.37, 27-35, 1991.

12

[14] F. T. Leighton, B. M. Maggs and S. B. Rao. Packet Routing and Job-Shop Scheduling in O(Congestion
+Dilation) Steps. Combinatorica, V.14(2), 167-180, 1994.

[15] K. Mehlhorn and D. Michail. Network Problems with Non-Polynomial Weights and Applications.
Manuscript, 2005.

[16] R. Preis. Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General Graphs.
STACS 1999, 259-269.

[17] D. B. Shmoys, C. Stein and J. Wein. Improved Approximation Algorithms for Shop Scheduling Problems.
SIAM Journal of Computing, V.23, 617-632, 1994.

[18] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sevastianov and D. Shmoys. Short Shop
Schedules. Operations Research, V.45(2), 288-294, 1997.

13

A Tight Bounds in Section 2.1

First, we give some bounds for the cardinality of the maximum weighted matching.

Proposition 7 For any k ≥ 1,

Card
(
MaxWeightMatch(~xk)

)
≥ 0.5 · Card(MaxCardMatch)

Proof. Let M denote the MaxWeightMatch(~xk), and M∗ the MaxCardMatch. Our goal is to compare the number
of edges in M to that of M∗, say Card(M)/Card(M∗). Consider the subgraph induced by M ∪M∗, to compare
Card(M) and Card(M∗), we need to compare the number of edges in M and M∗ for each connected component.
It is easy to see that in each connected component C, the number of edges in C ∩M∗ is at most twice of the
edges in C ∩M , thus we are done. ¤

The 0.5 ratio is tight when n and k are large. Consider the following example: There are n + 1 customers
{a0, a1, . . . , an}, where n is an even integer, and n+1 items {b0, b1, . . . , bn}. For i = 1, . . . , n, customer ai ranks
item bi as her 2nd choice. For i = 1, 3, . . . , n − 1, customer ai ranks item bi+1 as her 1st choice, and for i =
0, 2, . . . , n, customer ai ranks item b0 as her 1st choice. For this example, we know Card(MaxCardMatch) = n+1
and Card

(
MaxWeightMatch(~nk)

)
= 1 + n/2, when nk ≥ 2(n − 1)k. Note that when k = 4, we should have

n ≤ 6, thus, the ratio is at most (1 + 6/2)/(6 + 1) = 4/7.
For k = 1, the upper bound is 2/3, as the following example shows: There are three customers {a1, a2, a3}

and three items {b1, b2, b3}. The preference lists of customers are:

a1 : b3 b1

a2 : b1 b3 b2

a3 : b3

According to the definition of the valuation function, we have v(a1, b1) = 2, v(a1, b2) = 0, v(a1, b3) = 3,
v(a2, b1) = 3, v(a2, b2) = 1, v(a2, b3) = 2, v(a3, b1) = 0, v(a3, b2) = 0, v(a3, b3) = 3. Thus, the MaxWeightMatch
is (a2, b1) and (a3, b3) whose cardinality is two, whereas the MaxCardMatch has size three.

Now, we give tight bounds for the order-based and stable matching algorithms.

Proposition 8 For any k ≥ 0,

Val
(
StableMatch, xk

) ≥ 0.5 · Val
(
MaxWeightMatch(~xk, xk

)

Proof. Let M∗ be the StableMatch and M be the MaxWeightMatch(~nk). Our goal is to compare the value of M
and M∗, say Val(M∗, xk)/Val(M, xk).

Consider the subgraph induced by M∪M∗. For each connected component C, assume C is composed by edges
e1, . . . , el, where each ei is connected to ei+1 and edges are alternatively contained in M and M∗. For any ei ∈ M ,
1 < i < l, due to the definition of stable matching, we know v(ei) ≤ max{v(ei−1), v(ei+1)} ≤ v(ei−1) + v(ei+1),
since otherwise, the two vertices of the endpoints of ei would have incentive to be paired together. If el is
connected to e1, we know that for any ei ∈ M , the value of ei is at most the sum of values of the two adjacent
edges, which belong to M∗ and we are done. Otherwise, if e1 ∈ M (or el ∈ M), we must have v(e1) ≤ v(e2)
(or v(el) ≤ v(el−1)), because otherwise, similarly, the two vertices of the endpoints of e1 (or el) would have
incentive to be paired together. No matter which cases, Val(M∗, xk) is at least half of Val(M,xk) in the connected
component C. Thus Val(M∗, xK) ≥ 0.5 · Val(M, xk), and the conclusion follows. ¤

Again the 0.5-approximation ratio is tight. Consider the following example: There are two customers {a1, a2}
and n items {b1, . . . , bn}. Customer a1 prefers both b1 and b2 as her 1st choice (with a tie) and a2 only prefers
b1. According to the definition of the valuation function, we have v(a1, b1) = v(a1, b2) = v(a2, b1) = nk, and
the value of all other edges are zero. Then the MaxWeightMatch(~xk), (a1, b2) and (a2, b1), has value 2 · nk. But
(a1, b1) and (a2, b2) give a solution of StableMatch with value nk only.

14

It is well known that OrderMatch with arbitrary order of vertices gives a 0.5-approximation to the value
of the MaxWeightMatch [3, 16]. In the universal ranking valuation function, this ratio is still tight. The tight
example for StableMatch algorithm also gives a tight bound for OrderMatch. In that example, the OrderMatch
only selects the edge (a1, b1) with value nk, which is half of the MaxWeightMatch.

Now, we analyze the rank-maximal matching.

Proposition 9 For any universal ranking valuation function ~v, we have

Val(RankMaxMatch, ~v) ≥ 0.5 · Val (MaxWeightMatch(~v))

Proof. Observe that essentially, RankMaxMatch greedily chooses edges in the non-increasing order of val-
ues. As discussed above, OrderMatch with any ordering of customers gives at least half approximation of the
MaxWeightMatch, we may fix the ordering of customers by the solution of the RankMaxMatch. At this point,
RankMaxMatch is equivalent to the OrderMatch, which gives a 0.5-approximation to the MaxWeightMatch. ¤

The RankMaxMatch can not approximate the MaxWeightMatch by a factor better than 0.5 even for the
universal ranking valuation functions. We consider an example of Irving [11] as follows (for simplicity, assume
there are five customers and items):

a1 : b1

a2 : b1 b2

a3 : b1 b3

a4 : b2 b4

a5 : b3 b5

Note that M∗ = {(a1, b1), (a4, b2), (a5, b3)} is a RankMaxMatch with profile 〈3, 0, 0, 0, 0〉, and M = {(ai, bi) | i =
1, . . . , 5} is a MaxWeightMatch with profile 〈1, 4, 0, 0, 0〉. With the universal ranking valuation function ~xk, we
have Val(M∗) = n+1

2 nk = nk+1+nk

2 , and Val(M) = nk + (n− 1)(n− 1)k (in our example above, we have n = 5).
It is easy to see that w(M∗)

w(M) → 0.5 when n approaches to infinity.

B Proofs in Section 2

B.1 Proof of Lemma 1

Proof. Assume without loss of generality that M = {(a1, b1), . . . , (a`, b`)}. Thus, items in {b`+1, . . . , bn} is
not allocated to any customer. Our first observation is that for any 1 ≤ i ≤ `, v(ai, bi) ≥ n − ` + 1, because
otherwise, there exists an edge from ai to some item in {b`+1, . . . , bn} with value higher than v(ai, bi), which is
a contradiction.

Note that the result follows trivially when w = n. In the following we only consider the case when w < n. As-
sume there are at least w−n+`+1 edges in M∗, without loss of generality say M ′ = {(a1, b1), . . . , (aw−n+`+1, bw−n+`+1)},
with value at most w. Let A′ = {a1, . . . , aw−n+`+1} and B′ = {b1, . . . , bw−n+`+1}. Note that besides these
edges, there are n−w−1 edges in M , which implies that for each ai ∈ A′, there is bj ∈ B′ such that v(ai, bj) > w.
Define

M ′′ = {(ai, bj) | ai ∈ A′, bj ∈ B′, v(ai, bj) > w} .

Now consider the subgraph G′ = M ′ ∪M ′′. Since the degree of each vertex in A′ is at least two in G′, there
is a loop L in G′, which is composed of edges in M ′ and M ′′ alternatively. Now we can replace those edges in
L ∩M ′ by edges in L ∩M ′′, which gives a better matching solution, a contradiction. ¤

B.2 Proof of Proposition 5

Proof. Let M be a MaxCardMatch. Assume M is not Pareto-optimal, which implies that there is another
matching M ′ such that some customers get better assignments and no customer gets worse, compared with the
assignments of M . Let A1 ⊆ A be the set of customers that get better assignments in M ′ and A2 = A − A1.

15

Note that if a customer gets an assignment in M , the customer must also get an assignment in M ′, which
implies that Card(M) ≤ Card(M ′). Thus, M ′ is a MaxCardMatch.

Let ~v be any universal ranking valuation function. Due to the Pareto-optimality of M ′, we have

Val(M ′, ~v) = ValA1(M
′, ~v) + ValA2(M

′, ~v)
> ValA1(M,~v) + ValA2(M

′, ~v)
= ValA1(M,~v) + ValA2(M,~v)
= Val(M,~v)

Therefore, for any MaxCardMatch M , when M is not Pareto-optimal, we can always strictly improve the
weight of M to another MaxCardMatch M ′. Since the values of edges are finite, in the end we can reach to a
MaxCardMatch which is Pareto-optimal. ¤

B.3 Proof of Proposition 6

Proof. To get the flavor of the proof, we only prove here for the RankMaxMatch and all other matchings are
similar.

Let M be a RankMaxMatch. Assume M is not Pareto-optimal, which implies that there is another matching
M ′ such that some customers get better assignments and no customer gets worse, compared with the assignments
of M . Let A1 ⊆ A be the set of customers that get better assignments in M ′ and A2 = A−A1. Thus, we know
that customers in A1 get higher rank assignments in M ′ than M , and customers in A2 get the same assignments
in M ′ and M . Thus, the profile of M ′ is striclty larger than M , which contradicts to the rank-maximization of
M . ¤

C Proof of Theorem 2

Note that the reduction constructed in the theorem above implies that W3DM is at least as hard as StaticRentMark,
but not vice-versa. In order to prove that StaticRentMark is APX-hard, we prove that the partitioning of tripar-
tite graphs into edge-disjoint triangles (EdgeDisjTrianglePar) is APX-complete and we give a reduction from the
StaticRentMark to EdgeDisjTrianglePar. Formally, in the EdgeDisjTrianglePar problem, given a tripartite graph
G(V1, V2, V3; E) where V1, V2 and V3 are disjoint sets of vertices, and E ⊆ {V1 × V2} ∪ {V1 × V3} ∪ {V2 × V3},
the goal is to find the maximum number of edge-disjoint triangles in G.

Given an instance G(V1, V2, V3;E) of the EdgeDisjTrianglePar problem, we construct an instance S(A,B; T,~v)
of StaticRentMark by setting A = V1, B = V2, and T = |V3|. Let π be any one to one and onto mapping from
[T] = {1, . . . , T} to V3. Define vt(i, j) = 1 if and only if {(i, j), (j, π(t)), (i, π(t))} ⊆ E. It follows that there
exist w disjoint triangles in G, if and only if there exists a set of matchings for StaticRentMark in T time steps
with total value w. To show the APX-hardness of StaticRentMark, it remains to prove that EdgeDisjTrianglePar
is APX-hard.

Holyer [8] proved that edge-partitioning of general graphs into edge-disjoint triangles is NP-complete. A
more careful analysis of this proof shows that the edge-partitioning of general graphs is APX-hard [10]. We
observe that the set of graphs that Holyer used in his NP-hardness proof for edge-partitioning triangles is in
fact tripartite. To see this, we need to define some notations from [8]. Let graph H3,n be a graph with n3

vertices V = {(x1, x2, x3) ∈ {0, 1, 2}n | ∑3
i=1 xi = 0(mod n)}. Let ((x1, x2, x3), (y1, y2, y3)) be an edge in H3,n

if there exist i, j ∈ {1, 2, 3}, i 6= j, such that xk = yk(mod n) for k 6= i, j and yi = (xi + 1)(mod n) and
yj = (xj + 1)(mod n). The resulting graph reduced from any 3SAT instance in Holyer’s proof is a result of
combining and joining H3,p’s. It is not hard to verify that H3,n is 3-vertex-colorable and any combination and
joint of these graphs is also 3-vertex-colorable. As a result, Holyer’s proof of NP-hardness [8] and its extension
for APX-hardness [10] of edge-partitioning of general graphs implies the APX-hardness of EdgeDisjTrianglePar.
This, in turn, implies that StaticRentMark is APX-hard. ¤

16

D Proof of Theorem 4

Proof. We give a reduction from 3SAT problem where each clause has exactly three variables to the problem
of deciding if the solution to an instance MinDynamicRentMark(2) is 5 or 6. This shows that approximating
MinDynamicRentMark(2) within a factor better than 6/5 = 1.2 is NP-hard. The idea of the proof is similar
to that of [18] for shop scheduling problem. Consider an instance of the 3SAT problem with set of literals
U = {x1, . . . , xn} and clauses C = {c1, . . . , cm}, for each literal xi, we consider its unnegated and negated
occurrence: Let the k-th occurrence of xi be xi,k and of x̄i be x̄i,k, for k = 1, . . . , 3m. For each variable xi, we
associate 6m customers xi,1, x̄i,1, . . . , xi,3m, x̄i,3m, with their preference lists as follows:

Lxi,1 =
(
Ia(xi,1), Ib(xi,1), Ic(xi,1), Id(xi,1)

)

Lx̄i,1 =
(
Ia(xi,1), Ib(xi,1), Ic(xi,3m), Id(x̄i,1)

)

Lxi,2 =
(
Ia(xi,2), Ib(xi,2), Ic(xi,2), Id(xi,2)

)

Lx̄i,2 =
(
Ia(xi,2), Ib(xi,2), Ic(xi,1), Id(x̄i,2)

)

· · ·
Lxi,3m

=
(
Ia(xi,3m), Ib(xi,3m), Ic(xi,3m), Id(xi,3m)

)

Lx̄i,3m
=

(
Ia(xi,3m), Ib(xi,3m), Ic(xi,3m−1), Id(x̄i,3m)

)

We have the following two observations:

• for any xi,k and x̄i,k, their 1st two items (say Ia(xi,k) and Ib(xi,k)) are the same.

• the 3rd item of xi,k is equal to that of x̄i,k+1 (say Ic(xi,k)), for k = 1, . . . , 3m−1, and the 3rd item of xi,3m

is equal to that of x̄i,1 (say Ic(xi,3m)).

For each xi, we construct 5× 3m dummy customers with their preference lists as follows:

Lx′(1) =
(
Iα(x′(1)), Iβ(x′(1)), Iγ(x′(1)), Ib(x)

)

Lx′(2) =
(
Iα(x′(2)), Iβ(x′(2)), Iγ(x′(2)), Ib(x)

)

Lx′(3) =
(
Iα(x′(3)), Iβ(x′(3)), Iγ(x′(3)), Ib(x)

)

and

Lx′′(1) =
(
Iα(x′′(1)), Iβ(x′′(1)), Iγ(x′′(1)), Iδ(x′′(1)), Ic(x)

)

Lx′′(2) =
(
Iα(x′′(2)), Iβ(x′′(2)), Iγ(x′′(2)), Iδ(x′′(2)), Ic(x)

)

for x ∈ {xi,1, . . . , xi,3m}.
For each clause cj = x∨ y ∨ z, let Id(x) = Id(y) = Id(z). Note that the equation means that the items are the

same. All unspecified items in the above construction are different.
Assume we can allocate items to all customers according to their top two choices in 5 time steps. For any

xi and x ∈ {xi,1, . . . , xi,3m}, consider customer x′(1), x′(2) and x′(3), we know Ib(x) must be allocated to them
at the last three time steps. Thus, Ib(x) should be allocated to customer x at either the 1st or 2nd time step.
Similarly we know that Ic(x) should be allocated to customer x at either 2nd or 3rd time step.

If for some customer xi,k, we allocate Ia(xi,k) to her at the 1st time step, we have to allocate Ib(xi,k) and
Ic(xi,k) to her at the 2nd and 3rd time step, respectively. Thus, we must allocate Ic(xi,k) to customer x̄i,k+1 at
the 2nd time step, which implies that we allocate Ib(xi,k+1) to x̄i,k+1 at the 1st time step. Therefore, we must
allocate Ia(xi,k+1) to xi,k+1 at the 1st time step. By this way, we know that at the 1st time step, we allocate
Ia(xi,k) to xi,k for any k = 1, . . . , 3m. Similarly, If there exists k so that we allocate Ib(xi,k) to xi,k at the 1st
time step, then this holds for all k = 1, . . . , 3m. For the former case, we define xi to be FALSE, and for the
latter case, we define it to be TRUE. Thus, this gives a feasible assignments for all variables.

For each clause cj = x ∨ y ∨ z, since all allocations can be done in 5 time steps, it implies that one of Id(x),
Id(y), and Id(z) is allocated at the 3rd time step. Assume without loss of generality that this time step is x. For

17

this variable, we must allocate its Ic(x) at the 2nd time step and Ib(x) at the 1st time step, which implies that
x is assigned to be TRUE. Thus, clause cj is satisfied.

On the other hand, assume the instance of 3SAT is satisfiable. For each xi, we allocate items to customers
as follows: If xi is TRUE,

• at the 1st time step, allocate Ib(xi,k) to customer xi,k and Ia(xi,k) to x̄i,k, respectively, for k = 1, . . . , 3m.

• at the 2nd time step, allocate Ic(xi,k) to customer xi,k and Ib(xi,k) to x̄i,k, respectively, for k = 1, . . . , 3m.

• at the 3rd time step, allocate Ic(xi,k) to customer x̄i,k, for k = 1, . . . , 3m. For each customer xi,k,
k = 1, . . . , 3m, if Id(xi,k) is available, allocate it to her, otherwise, allocate Ia(xi,k) to her.

• at both 4th and 5th time step, for each customer x, if Id(x) is available and not assigned to her yet, allocate
it to her, otherwise, allocate any other items that are on her list.

It is easy to see the above allocation is feasible. If xi is FALSE, we can define the allocation similarly. Thus,
we can allocate items to customers in 5 time step.

Note that the instance constructed above can be done easily in 6 time steps, thus the MinDynamicRentMark(2)
problem is NP-hard to approximate within ratio 6/5 = 1.2. ¤

18

